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Abstraet: The division of large landscapes into ‘hilislopes’ is an attractive concept in nydrologic modelling.
It essentially reduces the dimensionality of the landscape from three dimensions to two: vertical and lateral.
This results in economy with respect to both conceptual and computational complexity. The svolution of a
hitlsiope hydrologic model is described, from beginnings in the traditional distribution function paradigm, 10
the presentation of a new ‘catena routing model’ (CRM). This development has been achieved adaptively.
Fach new application of the model to a different study area has revealed Hmitations in its predecessor, and has
necessitated an ongoing search for a practical, general hillslope model.
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1. INTRODUCTION

Hydrologic models differ in the way lateral flow
processes are represented, from not at all {ie
lumped models), through semi-distributed models
with lateral transfers at scales larger than

et al., 2000a, 2001]. We describe the cvointion of
its hillslope sub-model.

2, HOBIZONTAL PARTITIONIMNG

hillslopes, to distribution-style conceptualisations
{where the “clements’ are not spatially contiguous
in the landscape, but rather are in some distribution
based on process understanding), to fully explicit
models.

models is nseful because it reduces the scale of
representation of processes down to a level that is
more commensurate with the spatial scale of our
understanding of the processes themselves, and the
dominant controls on these processes, such as land
use change. In many cases, this scale is the
“hillslope’ scale [Fan and Bras, 1995], thai of low-
order watersheds and the division of these into
xeric through mesic areas. Lumped and semi-
distributed  models are not suitable  for
investigations relating io processes operating at
this scale. At the opposite end of the continuum,
fuily explicit models often represent more than is
needed, and are data-demanding. Models that
based their spatial structure around hillsopes, and
the xeric-mesic catenae within them atternpt to find
the middle ground that is optimal for a cestain type
of landscape investigation. The Macaque model is
one such model {Watson et al,, 1998, 1999b; Pesl

~hetween-each-node-in 2 river network-derived 4Fogm o
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A cenlral leaiure Of MEcague ¥ b prsironioos
representation of spatial heterogeneity within large
watersheds. For this, the mode! adopts the spatial
struciure set_forth in the RHESSys model by Band
et al. [1993]. Large watersheds are divided into
many “hillslopes”, these being the segments of land

analysis of a digital ferrain model {DTM). This
captures broader scales of heterogensity, such as
where different hillslopes are subject lo differing
solar radiation regimes. Within hillsiopes, the
major remaining heterogeneity is often aligned
along a catena from ridge-top to valley-botiom. In
reality, such catenae are oflen not ideal sequences,
aligned along a single flow patk down the
hilislope. Howsver, welness indices can be
calculaied which tend to reflect the position of
each part of the landscape along a hypothetical,
continuous flow path. The TOPMODEL wotness
index, In{e/tanf}, [where a is upslope area per unit
contour Jength and B is slope; Beven, 1997] is the
most widely used for this purpose. Macague
divides each hillsiope imto about 10 differen:
groups of cells, each associated with a different
weiness index value. These groups are ihe
elementary spatial units {E53Us) of the model.



3. LATERAL SUBSURFACE FLOW - THE
TOPMODEL DFM

The next step is to consider how to represent the
tateral movement of waier between ESUs. Three
schemes have been used within Macague to date.
The model was originally designed for use in forest
situations  with sofls of wvery high infiltration
capacity. So overland flow down hillslopes was
ignored. Most lateral redistribution of water in
these conditions occurs as subsurface flow. The
first scheme implemented was what we refer to as
the distribution function modelling (DFM)
approach, as described by Beven [1997] for single
hillslopes and by Band et al. [1993] and others for
iarge landscapes comprised of multiple hiflslopes.
This assumes a steady state flow through hillslopes
such that the ‘shape’ of the water fable when
viewed as a section down the catera remains
constant for a given rate of recharge, and varies as
the entire hillslope becomes wetter through a
higher rate of recharge, and consequently, a higher
total saturated soil moisture storage, The approach
assumes a spatially constant rate of recharge, r, and
a spatially constant vertical saturated soif hydraulic
conductivity (K} profile. If simple mathematical
formulae arc used to represent the K profile, then
the depth to the water table, z,, of any point,
c == {(...L], in the landscape can be predicted by an
analytical mathematical solution to the governing
equations. For example, the traditional assumption
is for an exponential decay in £.:

Models using steady-state expressions of this form
are termed distribution function models (DFMs).
Their prediction of the iateral diswribution of
moisture deficits requires only knowledge of
landscape attributes {a, and 3}, and accounting of
the mean hillslope moisture deficit, S. Models of
this form instantly redistribute water each time step
o maintain the shape of the deficit curve defined
by the distribution function. This can be thought of
as an “infinite lateral conductivity™ assumption —
i.e. there is no time delay in lateral redistribution.
Further, Beven and Kirkby’s analytical framework
conveniently yields a term for the subsurface
{(baseflow) discharge of the entire hillslope, gy
based only on the hillslope moisture deficit and a
scaling parameter gq:

=gt Sm)

4. ANEXPLICIT DISTRIBUTION
FUNCTION MODEL (EDFM)

For practical applications, where we are interested
in being able to test the location of runoff
producing areas in the field, we developed a more
explicit model of runoff generation [Watson et al.,
1998]. Under this ‘explicit DFM’ (EDFM),
baseflow, Gpue, for each ESYU  caleulated
separately as follows. Firstly, the ESU is thought of
as having two horizomial portions: the ‘saturated

K R
)= o

where fis a shape parameter. Equation {1} can be
expressed in terms of soil saturation deficit, S

Y o A =

where m is also a shape parameter that is related to
Fby way of the sofl active porosity, Ag,, which is
assumed to be vertically constant:

AS‘I
m=—=, S =z B,

3
This leads to the following distribution function for
the local water table depth 54, [Beven and
Kirkby, 1979]:

Sdisr.x = g_ g (wx —.;} {4)
w, = En(ax/tan{ix} )

where w, is 2 wetness index af point x, a, is
upslope area per unit contour lengih, and 8, is
terrain slope.

portion, pr O Sprs i iy wmtnraed o the
surface, and the ‘unsaturated portion’, (I-p),
whose water table lies somewhere below the
surface. These portions are assumed to vary with
the saturation deficit of the ESU as a whole (the
saturation deficit represenis the location of the

- water table, which-divides-the ESU-verticallp-into-— oo oo

saturated and unsaturated zones). By assuming a
uniform surface gradient, A,/A,, underlain by a
uniform water table gradient, we can estimate the
saturated portion as a linear function of saturation
deficit with the help of a parameter, S,, that
specifies the saturation deficit at which the
saturated portion is exactly zero:

5 -5

P, = I A
=TS @
Baseflow for ecach ESU is assumed to exfiitrate
through the saturated portion of the ESU st a rate
controiled by the surface K K., aod the
hydraulic gradient, A, /4, of the ESU:

A}i,i
surf i A (8)

A

Qbase,f = pi K
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where the hydraulic gradient is estimated as the
surface gradient, A,/4,, scaled by a parameter,
p:o<sp<sh

A A, 9

X X

X

For generalized DFMs, where the gradient of
saturation deficit with respect to wetness index is
specified as a key parameter, Ag/A,, {see Equation
(18) below), 5, can be estimated from Agy, the
gaturation deficit at the dry end of an ESU when
the wet end is just becoming saturated, and A, ;, the
range of w; values observed across ail cells within
an ESU [Watson, 1999]:

5 = é&: o _iéS.A_
a.r 2 ZAW Wi (1(})

In catena routing medels (see below), a more
certain estimation is possible:

S{{‘izﬁﬁj(l_p)‘ﬁe.i/z (i};)

The samrated proporiion is also used in the
estimation of stormflow runoff generated by rain
falling directly on saturated areas. Maps can thus
be drawn of the total runoff (gs) producing areas
for each time step of simulation {by colouring each
ESU according to its runoff), and of the surfce

However, there are limitations to the degree to
which these can be manipulated. As explained
helow, the wemess index is restricted by the need
for the inversion {0 be integrable, and the
distribution function is restricted by need o
maintain continuity.

Firstly, in analytical solutions, the wetness index is
governed by the assumed shape of the Kz}
function. Ambroise et al. [1996] give the weiness
indices and distribution functions that result from
some aiternate assumptions about the X profils. It
is important to realise that in order for these
analytical solutions o exist, all expressions of &
versus depth must have an inversion that can be
integrated, This is restrictive. Observed profiles of
K [eg Davis et al, 1999] are often best
represented by more complex  equations
representing the sum of two or more simple
equations. For example, we have found the
following general form to be able to characierize a
variety of (in particular) deep soils:

-
> - 3 r - P
- & ind + (K,mrf.r*‘%mnu }' S

K
[ I otherwise ( ! 2}
This satisfies the observed tendency for
conductivity to dramatically decline in soil’s C-
horizon, as well as the tendency for very high K
values in the O and A horizons of many forest soils

{Davis et al, 1999]

saturation of the hillslope (by colouring each ESU
according to its saturated portion). We prefer this
scheme because it forces a reconciliation between
the dynamics ~of predicted water - table ~shapes,
predicted spatial distribution of runoff producing
areas, and predicied hydrographs. We deem the

 model valid only if all three are satisfactority

predicted. In the Ettercon3 catchment, this was
determined using piezometer nests, field survey of
source areas, and inferemce of the existence of
variable source areas from the dependence of the
storm flow / precipitation ratio on antecedent
conditions [Campbell, 1998; Watson, 199%].

5. GENERALIZING THE DISTRIBUTION
FUNCTION MODEL (GDFM)

Early experiments with Macague [Watson et al.,
1996] showed that by varying the TOPMODEL
‘m’ parameter, the model was able to reproduce
sither the observed hydrograph or the observed
catena profile of water table depth [Campbeli,
19981, but not both for the same value of m.
Initially, this caused us to question the form of the
wetness index and the distribution function.

This equation cannot be inverted (o produce an
anaytically integrable equation for z in terms of £
{or, analogousty, § in terms of X). Thus, a weiness
index - and - distribution - function. . cammot  be
calculated from this equation in the same way as it
could for the X equations presented by Ambroise et

Al T996T. This represents | lipiitation inthe range

of wetness indices available to us that have
maiching K profiles.

Secondly, given a particalar wetness index, the
way in which we can use this index in &
distribution function is also limited. It must
provide continuity of water balance. The essential
requirements of a distribution function are. that i
predicts local moisture conditions based on mean
moisture conditions and a measure of location (i.e.
a wetness index):

S = ‘f'@swf) (13)

Such an equation allows us 1o speciiy local
moisture conditions based on global moisture
accounting, However, if we are to do this, we must
ensure that the sum of local moisture values is the
global value:
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where 4, is the area of BESU 7, and T4 is the total
area of the hillslope. The only distribution
function that satisfies this is one of the form:

f@, W, }: E-{—g(%»’i)

where g{) 1s some function of wetness index alone
{Watson, 19997, The required equaiity s then

(i3)

I :
S3lsbul =0

The moest general form of g that satisfies Equation

(18 is:

g(wa-)b%*(w«;) (4

where Ag/A, is the gradient of saturation deficit
with respect to weiness index {negative). Thus, the
generalised distribution function (GDF) is thus:

Syt s = S % (Wf - ;’;}

(18)

This  agnalveis  thus  shows  that  the original

[Campbell, 1998]. This cannot be represented by a
GDFM.

6. LIMITING THE DISTRIBUTION
FUNCTION MODEL (LDFM)

The above discussion is underfain by the paradigm
that the only means by which we allow local
saturated moisture deficits to vary is by way of the
distribution function. In order to escape this
paradigm, a means iz required by which local
moisture  agcounting can  be combined with
distribution fanction accounting in such a way that
continuity of water balance is not violated.

Watson et al. [1998] implemented a solution
termmed ‘limited distribution function moedelling’
(LDEM). Under this method each ESU accepts a
lateral flux to or from the remainder of the
hillsiope by way of 2 distribution function that is
fimited by an additional governing parameter,
Under the conventional GDF paradigm, the net
lateral flux from ESU j at Gme £, Grueri i, Would be:

- Si =
' {19}

The LDFM approach adds an additional factor,
&0sd<h:

q!ﬂ!ﬁm!.i,l = Sdisr‘r',l

Qt‘arer‘ai.z‘.r = (Sdis‘f,('.r - Si‘f-l )6 (20)

Topmodel distribution furction (Equation (4)) is a
member of a rather exclusive set of functions that
can be used to achieve sicady state distribution
function modelling. Given the requirements of
malching X functions, and continuity of water

Lhatance, we ate only free 1o choose from wemess.... .

indices derived from investible £ funciions, and
different values of a scaling paramester Ag/A,,.

Interpreting this in physical terms, a8 GDFM (e.g.
Topmodel) can only simulate profiles of moisture
deficit down a hilislope catena that are of fixed
shape, moving vertcally only in unison. Any
increase of decrease in iotal hillslope moisture
must invelve exactly the same incrsase or decrease
in moisture at all parts within the hillslope. This
was expressed by Beven and Kirkby as the
‘oriform recharge assumption’. In shellow soils
with uniform vegetation cover, such an assumption
may hold. But in deep forest soils with well-
defined riparian zones, non-uniform recharge is
ubiguitous. Data from the Maroondah catchments
show that deep (520 m) water tables away from the
strgam move very fittle over time, while shallow
waler tables {<Zm) adjacent to saturation areas
move both sessonally and with every storm

This effectively removes the steady state
assumption and slows down the imposition of
temporally averaged moistare patterns imposed by
the ~distribution function, allowing - local - water
tables to fluctuate about this average with each

storm. Because under the EDFM approach,

streamflow is directly tied to surface saturation, we
have found that by calibrating this factor, we can
simulate realistic water table dynamics for both
shallow and deep water tables, concirrent with
accurate streamflow dynamics. Both of these are
crucial, as we are interested in the control of tree
water consumption by soll moisture dynamics, and
in turn, the effect of tree water consumption on the
flow duration curve and risks to domestic water
supply [Watson et al,, 1999b].

Because the Hmiting factor, 8, is applied uniformly
across the hilislope to all lateral fluxes imposed by
the distribution function, continuity of water
balance is assured.

We have found that the optimal values of 8
calibrated agzinst both flow and piczometer daia
can be very low, in the order of 0.001 [Watson,
1996]. This implies that the “infinite lateral
conductivity assumption” does not hold and that in
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fact lateral redistribution is very slow. [t also
implies that the exact cheice of wetness index i
not particularly critical, so long as it predicts long-
term spatial moisture patterns. Further, since local
moisture, and hence streamflow is now controlled
more by local vertical fluxes, there is & diminished
need to require that the K profile equation and the
distribution function can be analyticatly lnked (as
in Beven and Kikby, 1679). Thus the two main
limitations of the purely GDFM approach are
somewhat relaxed by the adoption of the LDFM
approach. Yet the parsimony and computational
efficiency of distribution function modelling in
general is retained, with the addition of a single

parameter, 6,

7. SPATIAL PARAMETERISATION ANMD
THE REALITY OF APPLIED
MODELLING

Landscapes are not managed at the hillslope scale.
Rather, they are managed at a regional level, as
collections of a large number of hilislopes. Thus
while the hillslope is a convenient umit for
understanding processes such as runoff generation,
we must simulate regions in order to understand
the interplay between hillslope processes and
spatially varying climate, vegetation, soils, and
management policy. The parameters of a hillslope
model are dependent upon such factors, and so 2
‘regionalisation’ scheme must be developed to

catchments. However, when soll-type varies, as is
often the case within large landscapes, values of p
and § become uncertain and the approach falters.
Further, when variation in soil parameters occurs
within a hillslope, distribution function models in
general are of limited use,

8. ABSTRACTION OF A GEOMETRIC
CATEMA FROM A HILLSLOPE

In searching for the optimal, practical hillslope
model, we revist their initial utility: the parsimony
achieved through representation of landscape
spatial structure as a collection of catenae through
which flow moves in two dimensions {vertical and
downslope}, rather than as a three dimensional
network. The catena s a useful abstraction of a
hilislope, encapsulating both the boundary
conditions and dominant flow directions of
bilislope. This abstraction is the primary benefit of
hillsiope/catens modelling. Simulation of lateral
redistribution  through the use of distribution
functions is secondary, and not essential.

[+4

An alternative is io simulate lateral flow explicitly.
This is the approach currently adopted within
Macaque. Every time step, downslope fux i
calculated for each point along the catena using
Darcy’s Law. Water table levels respond to these
flows, and surface flow is produced when the water
table rises to the surface.

estimate valies of these parameters across a [arge
spatial domain.

Topmodel and other GDFMs have two degrees of
freedom, an equation for wettess index, w, and a
scaling parameter (either m or /). EDFMs have an

_additional parameter p, and LDFMs have a further

parameter, §.

None of these parameters can be measured
effectively in the field. They must be calibrated
against hydrographic and water table data, or
estimated through regionalisation of previously
calibrated values. Watson et al. [1998, 1999b]
calibrated p and & against both flow and
pizeometer data in the Maroondah catchments.
Peel et al. [2001] and [Peel, 1999] calibrated p
against flow date in a number of diverse
catchments throughout Australia. Returning to both
Marcondah and the Thomson caichments, Peel et
al. [2000ab] again calibrated p against gauging
data, and also developed a simple scaling
relationship between p and catchment size. The
Maroondah soils are relatively homogenecus, and
many field data on runoff processes are available,
so we are comfortable that calibrated values of p
and 8 are robust when applied o ungauged sub-

The required parameters are all oblainable from
terrain and soils data. The critical requirement is a
representation of catena geometry suitable for
explicit subsurface flow caloulations. A method 18
proposed here for constructing a catena geometry

~-that-is-representative of the impertant-geometey-of oo

hiflslopes characterised by gridded terrain date,
Firstly, we use a wetness index to locate all
hilislope cells along & moisture gradient that will
be used as a proxy for the soilt catena. The gradient
is discretised to isolate groups of cells as distinct
FSUs. The catena geometry is constructed as a
series of rapezoidal prisms, each a direct analogue
of a corresponding ESU along the wetness
gradient. Fach trapezoid is parameterised by its
area, 4, its width at the lower boundary, W), and its
convergence, ¢, Convergence is here defined as
the ratio of upper to lower boundary widths of the
trapezoidal prisms:

o =W, / W, 21
The trapezoid length, L, can be derived from these
parameters by a re-arrangement of the formula for
the trapezoid area:
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1

W +e, (22)

The required parameters, 4, W, and ¢, are
calculated through terrain apalysis of a gridded
digiial elevation model (DEM). 4, is simply the
sum of the area of all cells in each ESU. Width
calculations are propagated up from the ESU at the
botiom of the hillslope using Equation (21). The
lower boundary width, W, of the lowest ESU can
be estimated from the widths and number of stream
cells below the hillslope, which are in turn defined
as cells with an upslope area greater than some
threshold determuned from topographic maps or
asrial photos. The convergence, ¢, of a single cell,
J. is estimated from its valency, v, which is the
number of upslope neighbour cells for which cell ;
is their steepest descent nsighbour, with the
exception that cells with no wupslope neighbour
have a convergence of one:

¢, max(i,vj) (23)
bdean ESU convergence, ¢, is calculated as the
mean convergence of all cells in an ESUL

4. A CATENA ROUTING MODEL (CRR)
Armed with the above parameters, and technigues

for estimating them from terrain data, we are able
to devise a simple catena routing model (CRM).

where 3, is the mean surface slope of the ESU, and
the ESU length, 7, is derived from Equation (22)
The actual difference in mean elevations for the
two ESUs cannot be used, because the ESU that s
the drier of the two with respect to the wetness
mdex gradient is not guaranteed to be higher in
elevation. Similarly, the elevation range amongst
all cells within an ESU cannot be used, as this can
be zero. Therefore we use the effective hydraulic
gradients across an ESU to represent that between
the ES1J and its neighbour.

A.; is the difference in water table depths, z,
between the two ESLs, with z calculated from
Equation (3).

During development of the CRM algorithm, a
simplified  wversion was used 1im  Macaque
applications to the Thomson catchment in Australia
[Peet et al., 2000a,b], to eight diverse catchments
from around Australia [Peel 1999; Peel et al,
2001], and to the Salinas Valley in California
[Watson et al., 1999a]. The simplification assumed
a square hilislope with uniform width, ¥, estimated

as!
W, =W =24 8)

and the trapezoids were in fact rectangles with
fength:

Jo— 4l

FacH ame Sicp, (he iateral subsuriace Liow leaving
each ESU (per unit area of the ESU) is calculated
using Darcy’s Law:

giax‘eml i =
L

r

where T() is a transmissivity fanction specific to
sach ESU, evaluated at water table depth, z,
calculated by integrating Hquation (12),

7{z)= Z?FK(Z) i

G (25)

and A, ; is the hydraulic head difference between
the BESU and its downslope neighbour:

Aﬁ.i = &E,f + éi:,i (26}
S 18 an estimate of elevation difference between
the two ESUs, and is caleulated fom the surface
gradient and length of the E5U:

’&e.i = ‘{"’f/tamGSf} (27}

L (24)

L=t B i

29

While these applications were not able to represent
hillslope convergence, they are appealing because
they test the approach’s ability to respond directly

to measurable soil parameters. For example, in the

~ Salinas application, regional soil maps were used

to represent highly variable soil depths within the
landscape, and within hilislopes themselves, The
model was thus able to simulate observed
phenomena such as depressed water tables beneath
sandy alluvium at the base of hillslopes with
otherwise skeletal soils. The full convergence
algorithm, using Equation (22) for trapezoid
iength, is cuwrrently being tested.

19. CONCLEUSIONS

Pure distribution function models {DFMs) such as
Topmodel are theoretically attractive, but in many
situations do not fully reproduce observed spatial
suncif dynamics due to restrictions imposed by
their basic structure. Explicit and limited DFMs
can represent a wider range of dynamics, but
require additional, sometimes uncertain parameters
to do so. A catena routing model (CEM) is
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outlined that atiempts to solve these problems by
introducing a novel method of abstracting catena
geomeiry from cell-based hilislope data, and using
more easily defined parameters to support 4
Darcian flow algorithm within the abstract catena.
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