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Abstract: Agent-based simulation (ABS) is being increasingly used in environmental management.
However, the efficient and effective use of ABS for environmental modelling is hindered by the fact that
there is no fixed and clear definition of what an ABS is or even what an agent should be. Terminology has
proliferated and definitions of agency have been drawn from an application area, Distributed Artificial
Intelligence, which is not wholly relevant to the task of environmental simulation. This situation leaves
modellers with little practical support for clearly identifying ABS techniques and how to implement them.
This paper is intended to provide an overview of ABS in environmental modelling so that modellers can link
their requirements to the current state of the art in the techniques that are currently used to satisfy them.
Terminology is clarified and then simplified to two key existing terms, agent-based modelling and multi-
agent simulation, which represent subtly different approaches to ABS, reflected in their respective Artificial
Life and Distributed Artificial Intelligence roots. A selected set of case studies are reviewed, from which a
classification scheme is developed as a stepping-stone to developing a taxonomy. The taxonomy can then be
used by modellers to match ABS techniques to their requirements.
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We argue however, that the efficient and effective
use of ABS for environmental modelling is
hindered by the fact that there is no fixed and clear
definition of what an ABS is or even what an agent
should be. Terminology has proliferated and

1. INTRODUCTION.

Agent-based simulation (ABS) is being used in
environmental modelling for many reasons which
have already been well rehearsed in the literature

[e.g. Ferber, 1999; Judson, 1994; Taylor and
Jefferson, 1994]. ABS provides a framework in
which tractable techniques can be implemented
which  match  various requirements  of
environmental management . modelling. Namely,
ABS permits the coupling of environmental
models to the social systems that are embedded in
them such that the roles of social interaction and
adaptive, disaggregated (micro-level) human
decision-making in environmental management
can be modelled. It also permits the study of the
interactions between different scales of decision-
maker, as well as the the emergence of adaptive
collective responses to changing environments and
environmental management policies.

definitions of agency have been drawn from an
application area  (Distributed Artificial
Intelligence) which is not wholly relevant to the
task of environmental simulation. This situation
leaves modellers with little practical support for
clearly identifying ABS techniques and how to
implement them.

Thus, this paper is intended to provide an overview
of agent-based simulation in environmental
modelling and offers a simple, preliminary,
taxonomic structure that classifies models so that
modellers can link their requirements to the current
state of the art in the techniques that are currently
used to satisfy them. Sections 2 and 3 begin the
process by clarifying terminology and explaining
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why current definitions of agency are unhelpful.
Section 4 proposes a set of seven case studies that
are used to link five modelling requirements
(environmental model coupling; micro-level
decision-making; social interaction; adaptive
decision making; and multiple scale level decision-
making) to specific techniques implemented in
these studies. Section 5 proposes a first step
towards a taxonomy. As further studies emerge in
the literature, they will be reviewed, assessed, and
incorporated into this classification scheme.

2. DISENTANGLING TERMINOLOGY

A review of the literature reveals many different
terms being used to describe what, for want of a
neutral term, we have in this paper so far called
agent-based simulation. These terms include
agent-based modelling [Epstein and Axtell, 1996];
multi-agent simulation [Ferber, 1999; Gilbert and
Troitzsch, 2000]; multi-agent-based simulation
[Edmonds, 2001]; agent-based social simulation
[Doran, 2001; Downing et al., 2001]; individual
based configuration modelling [Judson, 1994]).

In this section, the objective is not to define new
terminologies for ABS in environmental
modelling, but to reduce these terms to a smaller
set of less ambiguous, more distinct terms. Key to
understanding and differentiating between these
terms is the knowledge that, obscured in this
morass of terms, there are two important
conceptual distinctions in approaches. On the one
hand, there is the belief that interactions are the
most important phenomena to be modelled (agents
can be fairly simple), and on the other, that
deliberative social cognition is the most important
(interactions spawn from the deliberations of the
agents). These distinctions derive from the three
different heritages of agent-based simulation
[Epstein and Axtell, 1996; Ferber, 1999]:

o . Individual-based modelling - stipulates that
populations of organisms should be
.disaggregated and thus represented in terms of
discrete individuals which are unique only in
terms of characteristics [Grimm, 1599];

o A-life simulation - refers to the simulation of
lifelike behaviours at the macroscale from
simple interacting microscale behaviours of
components [Bonabeau, 1997; Langton, 1988]

o  Distributed Artificial Intelligence (DAI)/Multi-
Agent Systems - refers to systems containing
many agents which are: autonomous - they act
independently of any controlling. intelligence;
social - they interact with other agents;
communicative - they can communicate with
other agents explicitly via some language;

reactive - they perceive and respond to
changes in the environment and pro-active -
they are goal-driven [Wooldridge and
Jennings, 1995]. Agents use these abilities to
“interact with and change other agents objects
within an environment” [Ferber, 1999: pl11],
in order to solve group problems.

The Alife/IBM roots of agent-based modelling and
the DAI roots of multi-agent simulation are clear
in the following definitions:

"In multi-agent simulations, the agents are located in an
environment... they will need 'sensors' to perceive their
local neighbourhood and some means with which to
affect the environment ... agents will also need to be
able to 'hear’ messages ... and send messages" [Gilbert
and Troitzsch, 2000: p167].

“Agent-based modelling [is wused to] discover
Sfundamental local micro mechanisms that generate
macro structures.” [Epstein and Axtell, 1996].

"Agent-based modelling [is] the set of techniques [in
which] relations and descriptions of global variables
are replaced by an explicit representation of the
microscopic features of the system, typically in the form
of microscopic entities ("agents") that interact with each
other and their environment according to (often very
simple) rules in a discrete space-time.” [Gross and
Strand, 2000:p27]

Of the other terms used, multi-agent-based
simulation (MABS) is defined as the simulation of
a multi-agent system, which mirrors Gilbert &
Troitzsch’s definition given above. Individual-
based configuration models are defined in terms of
simpler interacting agents and thus fall into the
category of ABM. Doran’s [2001] definition of
agent-based social simulation (ABSS) is
essentially the same as Gilbert & Troitzsch’s and
therefore is simply another term for a multi-agent
simulation. Downing et al.’s definition of ABSS
appears to be an umbrella term stretching across
both ABM and MABS, for models - which use
heterogeneous agents with boundedly rationality
that map to human actors in the real world. From
herein, the umbrella term agent-based simulation
(also used by Doran [1996]) will still be used.

3. UNHELPFUL CRITERIA FOR AGENCY

Having a clearer set of terms still.does not help us
to know how to best design an ABS. Looking up
definitions of what an agent should be is also not
very helpful. Most definitions [e.g. Davidsson,
2001; Doran, 2001; Gilbert and Troitzsch, 2000])
look to the field of DAI and use versions of the
definition of agency supplied by [Wooldridge and

1116



Jennings, 1995]. The problem here is that this
definition is used for a particular application, DAI,
in which software agents operate in a real world,
be they robots moving around a room or software
agents moving in different parts of the internet. In
this case, whether or not a prospective agent meets
these criteria is a functional fact. If the agent
cannot communicate explicitly using a language,
then it is dumb and no amount of interpretation of
its actions will prove the contrary.

When these criteria are applied to simulations of
agents, however, whether a criteria is met can
depend on the use of metaphor, not on

functionality. For example, in two functionally

identical implementations of social imitation,
[Lansing and Kremer, 1994] describe the imitation
process as one of "communication" between
neighbours in group meetings, whilst [Moss et al.,
2000] describe it not only as communication but
also as agents “observing" their “visible"
neighbours’ actions. Such use of metaphor to
describe behaviour weakens the value of the
criteria. Additionally, it is unclear whether Lansing
& Kremer’s version of communication is as worthy
of passing the criteria of communication as a
simulation that actually uses a language for
communication between agents [e.g. Legeard,
1999]. A final problem is that it is unclear how
many of the criteria need to be met for a
prospective agent to be deemed an actual agent. A
different approach to helping modellers design the
right ABS for their needs is required.

4. THE CASE STUDIES

The approach taken in this paper is, therefore, to
start from problem requirements, not terminology,
in providing a key to choosing a suitable agent-
based simulation design. In the rest of this paper,
different  requirements for  environmental
management models identified in Section 1 are
matched to different techniques used in a
representative set of cases of ABS found in a
variety of different literature. With this key,
prospective environmental modellers will be able
to match requirements to techniques.

The exemplar applications represent a range of
application areas in environmental modelling:

o the evolution of Balinese water networks
_ [Lansing and Kremer, 1994] - from hereon
referred to as the "Bali" model - this model
investigates whether a specific = Balinese
system of water temple networks, managing
irrigation practices, could have self-organised.

" Simulation is used to test this theory.

e the co-evolution of sustainable rangeland
management [Janssen et al., 2000] - the
"Rangeland" model - this model explores the
range of possible collective responses of
hypothetical pastoralists to regulators’ policies
for sustainability.

e Jake management assessment [Janssen, 2001]
- the "Lake" model - this model assesses
farmers’ collective responses to regulators’
taxation measures for reducing phosphorus
levels in a hypothetical lake.

e flood mitigation decision support [Legeard,
1999] - "MAGIC" - this is a tool in which
various “"expert agents” cooperate with each
other in order to come up with decision
support advice for human flood catastrophe
response teams.

e urban water demand management [Moss et al.,
2000; Downing et al., 2001] - the "Thames"
model - this model investigates how social
structure and learning affects the efficacy of a
regulator’s exhortations for consumers to save
water as part of a drought management policy.
The model has a specific region to model.

e animal waste management negotiation
[Guerrin et al., 1999] - "Biomas" - this model

~explores possible negotiating strategies and
outcomes used by simulated actors involved in
managing the removal, transportation and
processing of animal wastes.

e land use change [Polhill et al., 2001] -
"FEARLUS" - this conceptual model
investigates how well different social learning
strategies employed by decision makers
compete against each other in the face of a
changing, heterogeneous environment.

4.1 Requirement One: Coupling Social and
Environmental Models.

In environmental modelling, having an
environment in which to embed agents is the first
priority. Space can be represented either explicitly
or non-explicitly. Typically, if spatial patterns or
processes are not an important aspect of the
modelling application, then a spatially non-explicit
representation of space should be adopted. For
example, a spatially non-explicit representation of
space can be a database representation. However,
in certain applications, e.g. modelling land use
patterns, if the landscape spatial pattern is of
interest, then a spatially explicit representation of
the environment is required. Such a representation
could be a GIS or a simple grid. Neighbourhood
rules do not necessarily dictate the need for a
spatially explicit environment as neighbourhood
associations can be modelling aspatially in a
database. Care should be given to this topic as
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each representation can affect the computational
performance-of a simulation model.

A spatially non-explicit representation is used in
the Lake model, the Rangeland model and in the
Thames model. In these cases the environment is
simply a spatially abstract mathematical model
linked to the agents. Making the link requires
recognition that the environmental model and
agents may be at different scales. The output from
the environmental model may have to be
distributed to individual agents. Conversely,
individual agents’ decisions affecting the
environmental model may have to be aggregated in
some way. In the Lake model, all agents interact
with the whole lake. Each agent’s decision about
phosphorous use is therefore aggregated and an
aggregate figure for phosphorous inputs is applied
to the lake. Each agent therefore perceives the
same overall figure for lake water quality
calculated by the environmental model. In contrast,
such issues are not problematic when, as in the
Rangeland model, each agent has its own model
representing their own area of the environment.

Spatially explicit environmental space can be
represented either as a GIS or a simpler
abstraction, e.g. a grid. The desire to accurately
model a specific location is normally the driving

factor in choosing the high-cost approach of

embedding agents in a GIS. MAGIC is a good
example of this in that it focuses on providing
decision support for a particular region. A simpler
approach is taken in the conceptual model of
FEARLUS. In this model the environment is a
grid-based representation of land parcels. Each
grid cell contains the relevant attribute information
pertaining to a land parcel. Their choice was
appropriate to their exploratory goals of
investigating how spatial factors, such as

proximity to like-minded farmers, affects farmer -

decision-making. The same problems of scale have
to be considered when linking agents to explicit
environmental models.

4.2 Requirement Two: Micro-Level

Decision- Making ‘

Of equal importance in environmental modelling is
to be able to explicitly represent human decision-
making, particularly with regards to applying
psychological and sociological knowledge of
actual decision-making to agent design, which
contrasts with the rational homo-economicus of
classical economics. Decision-making in the
context of this section. refers to the ability of an
agent, in isolation, to decide on its behaviour at
any one point in time. Social interaction and
adaptation are considered later.

The range of decision-making models used in the
exemplars in this paper represents a continuum
from  sophisticated  knowledge-based rule
inferencing (e.g. MAGIC) to simple single
behaviour agents (the Bali model). Decisions about
complexity usually stem from the number of
agents being modelled and the goal of the model.
MAGIC uses distributed agents to come up with
decision support for mitigating flood catastrophes.
There are only three agents, each of which is
responsible for generating recommendations for a
particular flood situation. The issue is complicated,
the numbers of agents are low, and each agent has
to flexibly support the other with appropriate
information, thus the agent design is complex. The
agents have explicit  perception and
communication modules that are used to update a
knowledge base. An inference engine is used to

' generate recommendations.

Further down the continuum are decision-making
agents whose behaviours are decided by simple
sets of rules. In Biomas, agents are closer in style
to those in MAGIC, but not so sophisticated. They
are greater in number and their rules are designed
to control their negotiations over waste carriage
and processing. The agents in the Thames model
use rules to determine consumers’ water .use in
response to climate and exhortations from a water
regulator. This model represents a move towards
simulations representing many agents (70+).

Other simulation models with large number of
agents reduce the complexity of their agent
decision-making by using objective functions. For
example, in the Rangeland model, 100 pastoralist
agents are simulated and the goal of the simulation
exercise is to assess their aggregate response to
management policies. Each agent is designed to
decide on a stocking level by finding the level that
results in a desired level of utility as calculated by
an objective function. The FEARLUS model uses
agents that calculate the financial returns from the
adoption of each possible particular. land use and
then choose the use that maximises returns.

Finally, at the other end of the continuum, in the
case of Bali model agents simply have a fixed
behaviour: a specific cropping pattern. . Social
interaction is needed for behaviour to change.

4.3 Requirement Three: Social Interaction

Of increasing importance in environmental
modelling is to be able to explicitly represent
social interactions [Downing et al., 2001];
interactions that may make a difference to
environmental policy effectiveness. In the
exemplars in this paper, social interaction is treated
in a number of different ways, however it is
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important to note that not all agent-based
simulations use social agents. As already
mentioned, the Rangeland model represents none.
The assumption has been made that pastoralist
behaviour is not socially mediated.

Simulations reviewed in this paper perceive social
interaction as wuseful for either group task
execution (MAGIC, Biomas) or social learning
(FEARLUS, Bali, Lake, and Thames models). The
former two tend to use smaller amounts of agents
than the latter. Choice of social interaction
technique implemented determines which agents
can interact with which and depends on the role of
the interaction, and whether the interactions to be
modelled are local or global. It does not
necessarily depend on the metaphor used to
describe social interactions.

Task based interactions. With the decision
support agents in MAGIC, and the negotiation
agents in Biomas, there is need for explicit
message communication protocols to share
knowledge, deliberations and in the latter case,
offers. Both models represent distributed tasks,
hence social interaction is task-centred whereby
each agent interacts with only the agents it needs
to perform the task.

Local social learning. In the Thames model, the
psychological principle of consistency is used as a
mechanism by which agents learn new behaviours.
Agents thus only imitate agents that they know and
that are similar to themselves. The social network
is represented by a grid and knowledge of another
agent depends on them being near that agent on
this social network. Both the Bali and FEARLUS
models have concentrated on the importance of the
effect of spatial proximity on the spread of
behaviours. The agents in their models imitate
neighbours who are spatially close in the
environment. In FEARLUS, this means that land
managers must have land parcels that border each
other on the environmental grid. Note that,
although, the metaphor is different, both social
networks and physical proximity can be modelled
in the same way - by grids. '

Global social learning. The Lake model refers to
imitation and the psychological principle of social
comparability to determine how the agents learn
each other’s behaviours. No network or space is
represented. Rather, the agents can copy any other
agent’s behaviour. -

44 Requirement Four: Adaptive decision
making and behaviour

A further interest to environmental modellers is
how to explore the change in or emergence of

agent behaviour over time in response to
management policies and / or environmental
change. There are multiple strategy, fine tuning
and evolutionary approaches.

Multiple Strategies - This refers to the modelling
of agents as having more than one means of
making decisions. Which one they choose will
depend on environmental and personal
circumstances that will change during the
simulation. One possible approach to this is the use
of the "consumat" model method [Jager et al., cited
by Janssen, 2001] as used in the Lake model. In
this model, the agent has a variety of decision-
making methods (imitation, social comparability,
repetition, and deliberation) and switches between
them depending upon the agent's uncertainty and
financial returns (satisfaction). An alternative
method is provided by endorsements [Cohen, cited
by Downing et al, 2001]. In the Thames model
endorsement values are attached to particular rules
which control whether or not the agent imitates,
deliberates, or obeys authority. The endorsements
function as a conflict resolution device. The rule
with the currently highest endorsement is used.

Fine Tuning - These techniques are used to
improve the decision making, rather than the
behaviour. Agents can update their mental models
of parameter values when a particular satisfaction
criterion is not met (e.g. the Lake and Rangeland
models). Or else they can update their rule-base
with respect to new information gathered from the
environment or other agents (e.g. MAGIC).

Evolutionary - In these approaches, behaviours
rather than decision-making strategies of agents
adapt to match the successful behaviours of
others'. In this way, so the analogy goes, successful
behaviours are selected for replication in the
general population of agents. This can occur in two
ways, through replacement or social learning (see
Section 4.3). Replacement involves the removal of
unfit agents and their replacement with agents
which copy the currently most successful
behaviour (e.g. in the Rangeland model). In
evolutionary approaches the best strategies spread
through a population over time until the time that
policy or environment changes, when other
strategies may take over.

When, using these approaches it is important to

‘bear in mind the relevance of the evolutionary
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metaphor to the application problem. Do unfit
pastoralists necessarily get replaced by the fittest
ones, even ones that are not locally positioned?
When replacement or imitation is carried out non-
locally, the process approximates to a global
search for the fittest behaviours. It is important to



consider whether or not humans collectively
decide on management policy through such a
process of searching: Search might be useful for
finding the hypothetically optimal set of
management decisions for a  particular
environment, but not necessarily for modelling
reality.

4.5 Requirement Five: Multiple Scale Level
Decision-Making

The use of agents to represent different scales of
decision-making is claimed to be an important
benefit to understanding systems [Downing et al.,
2001]. However, sophisticated modelling of
multiple scales of agents is not being dealt with
yet. Guerrin et al. [1999] refer to a future version
of the Biomas model in which groups of individual
agents will be able to self-organise in order to
generate  constraints regarding  individuals’
decisions. In other models (the Thames and
Rangeland models) a single regulator agent is
represented to oversee the activities of the
individual agents. These agents are currently very
simple reactive agents with no capacity - for
devising new strategies of intervention. More work
needs to be done in this area.

In addition to the lack of multiple-scale level
decision making, the case studies show that there
are also many differences in the choice of scale
level at which the decision makers are modelled.
Despite the emphasis on modelling individuals in
ABS, in these examples, only the MAGIC, Thames
and Lake models explicitly model individuals. Of
the others, FEARLUS represents families of land
managers and the Bali model represents subaks -
groups of irrigators.

Of particular interest is that -Biomas not only
represents human agents, it also represents
physical objects as agents ("agents physiques"),
such as "vehicles", and "breeding farms!". The
physical agents are allowed to take an active part
in the negotiation process involving the human
agents. This process of representing non-
individuals as agents ‘has been referred to as
agentification [Gaumé et al., 1999]. It is in the
case of agentification that strict criteria for
defining agency break down. In one sense,
Wooldridge & Jennings' professed goal of
providing criteria (see Sections 2-3), in order to
prevent the term “agent" becoming a meaningless
"noise” term, has failed. In another, the loss of the
criteria brings some reality into the discussion of
agents in simulation - agents should be designed to

! translations of "moyen de transports" and

"élevages".

fit the modelling requirements, not to meet criteria
developed for another field such as DAL

5. TOWARDS A TAXONOMY:
CLASSIFICATION OF CASE STUDIES

Organizing these requirements into an efficient
taxonomic structure that makes sense to both
experienced modellers and newcomers is a non-
trivial task that will required continued debate.
Creating such a taxonomy requires the
development of a classification scheme for models
that utilizes hierarchically arranged sets of
characteristics. The more characteristics that are
shared by two models, the closer they will be on
the branches of a taxonomic tree. The development
of such a taxonomy requires that these
characteristics be first defined and then
hierarchically arranged to form the taxonomic tree.
Even this exercise is fraught with potential pitfalls
that will require continued debate to resolve.
Simple questions related to the characteristics that
should be chosen and their hierarchical
relationship will raise numerous questions.
Franklin and Graesser [1996] point out that agents
could be classified according to a subset of
properties that they possess, the tasks they
perform, their- control architecture, or the
programming language.

In Figure 1, we offer a simple, preliminary,
taxonomic structure that classifies models by the
requirements of those models. We believe this is
an approach that is well suited to environmental
modelling because it allows the classification of a
wide range of models into general categories in a
way that is informative to those who are new to the
field or may be in the early stages of model
development.

The taxonomic structure has two basic levels that
differentiate models on the basis of the three of the
requirements listed in the previous section (micro-
level decision-making; social interaction and
adaptive-decision making). While not exhaustive,
focussing on these three requirements allows us to
present a preliminary taxonomy complex enough
to foster a discussion. The arrangement we offer
here places "the most potentially complex
undertakings towards the base of the taxonomic
tree. The highest branch on the taxonomic tree
differentiates between models in terms of levels of
agent social interaction implemented, ranging from
less complex models with no interaction through to
the most complex models involving group decision
making. The next branch on the tree differentiates
between models which implement different levels
of adaptive decision making: none, multiple
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[ 1 echiaues

Environmental modelling using ABS

O Requirements

Social interaction

Bold Text Case study

v v v 4
none Local social learning Global social learning Group decision-making
Adaptive decision-making Adaptive decision-making Adaptive decision-making Adaptive decision-making

Evol T None MS

Evol

T

None

Rangeland Model BaliModel Thames  FEARLUS Lake Biomass MAGIC
simple rules a'nd fixed decision Model objective Model rule-based rule-based
objective functions rule-based functions rule-based inferencing

Figure 1. The taxonomic tree. Key to adaptive decision-making techniques: Evol - evolutionary;
MS - multi-strategy; T - tuning. Description underneath case study name represents the
basic decision making technique used.

strategy, fine tuning and evolutionary. In this case,
the decision-making characteristics of the agents
are viewed as being dependent upon the level of
social interaction, as more complex social
interaction in turn requires more complex decision-
making abilities in agents.

6. CONCLUSIONS

This paper has begun disentangling the morass of
terms used to describe agent-based simulation and
as such recommends the use of only two existing
terms for describing conceptually different sub-
classes of this methodology: agent-based
modelling and multi-agent simulation. The former
describes simulations. in which agent interactions
rather than agent cognition are of topmost
importance. The latter describes simulations in
which social cognition plays an important role.

Clearer terminology alone does not help to know
how to best design an ABS. A selected set of seven
case studies have therefore also been examined
and from them a classification scheme has been
developed as a stepping-stone to the development
of a full taxonomy. The taxonomy is intended to be
used by modellers to match their modelling
requirements to state-of-the-art ABS techniques.
Clearly, the taxonomy presented here is a first step,
designed to provoke discussion and feedback. A
number of questions will require further
development of the taxonomy before they can be
addressed, e.g., additional model requirements,
such as those related to scales of decision making,
could have a place in a taxonomic tree.
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Already, the taxonomy can provide salutary
information. It shows, for example, how the Lake
model is in a minority among social learning case
studies since it uses a social learning technique
based upon global, rather than local agent
interactions. Its isolation is probably not a
coincidence since, as already discussed, one reason
why agent-based simulations are so useful is
because they can generate emergent phenomena,
the generation of which is important to study if
more is to be understood about the development of
collective environmental management practices.
However, a precondition of emergence is that
agents are able to interact locally [Cariana, 1991].
Thus, the Lake model does not exploit the facility
of emergence that ABS offers and, arguably, this
omission weakens its scope and conclusions.

Despite its preliminary nature, the goal of the
taxonomy is to initiate a discussion that could
eventually lead to the development of a tool that
will both foster continued discussion of
environmental ABM design and serve as an
educational tool for those interested in taking up
modelling in response to specific environmental
management questions. The debate surrounding
the development of such a taxonomy could be very
useful, forcing researchers in this field to isolate
and describe the key elements of such models,
while identifying useful approaches to particular
design problems. While there are many types of
ABS, the design choices a modeller makes can
limit whether these simulations fully exploit the
potential power of this simulation methodology.
Future versions of this taxonomy could be used as
a checklist by which modellers can confirm that
their model designs meet their modelling
requirements.
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