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Abstract: When an operational artificial neural network (ANN) model is deployed, new input patierns are
collected in order to make real-time forecasts. However, ANNs (like other empirical and statistical methods)
are unable to reliably extrapolate beyond the calibration range. Conseguently, there 13 a need to determing if
these new input patterns are similar to the input data used in training the model. In order to address this
problem, a novel hybrid forecasting model consisting of a Self-Crganizing Map (SOM) and =2
backpropagation ANN (BPN) is presented. The SOM combines each new input patiern with the training
data and determines if the new paitern corresponds te patterns within the training set and the BPN is used to
obtain the forecast. In this way, it is possible to define the range of applicability of the mode! and there is
likely to be greater confidence in a forecast resulting from an imput pattern that is similar to those in the
training data. A case study is presenfed in which an ANN model is developed to forecast salinity in the
River Murray at Murray Bridge (South Australia) 14 days in advance. The model is developed using 6 years
of daily salinity, flow and river level data. Once the model has been developed, it is then combined with the
front-end SOM classifier and used as an operational model. The operaticnal model is then rialled on a
further 3-year period to determine whether the SOM is capable of indicating when the model will fail to
generalise. The results indicate that this approach is very successful and it is clear that the method has
widespread potential for developing confidence in real-time forecasting/prediction applications.
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(ANNs) have risen to prominence as a viabl Kartam, 1994]. Accordingly, if the data used to
. 0 promm b b train the ANN model are limited, it is very difficult
alternative to many traditional water resources _ . . [ .
y to determine when the model will fail to generalise

models, .parﬂclu ladly in the field OIF_ forecasting and to undesrstand the range of applicability of the
hydrologic variabies. Some of the salient features ANN made!

that have contributed to their popularity include
their ease of implementation, their ability to learn

from examples without explicit knowledge of the It has been acknowledged in the past that an ANN
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ANNs are well established in research circles and sense, I 1S tikely to perform poorly if faced with
. . ) inputs that are far removed from the examples that
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. . . . it was presented with during training. This led the

resources  problems  including  rainfall-runoff . S
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modelling [ASCE Task Committee on Application . _ e e
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Mater and Dandy, 2006]. However, cne limitation e N e e d d 1
of ANNs is that (like other empirical methods) generaiization will fail so that we understand the
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range of applicability of the ANN"? Once the
model has been calibrated and deployed, this
equates o knowing when the model is likely fc fail
and when the model needs tc be recalibrated to
incorporate new, uncharacteristic patteras that it
has not been trained on.

To improve generalisation ability beyond the
calibration range, Imrie et al. [2000] added a
guidance system Lo the original cascade correlation
learning architecture used in their study and
analysed the effect of using different output
activation functions. The guidance system
involved adjusting the cascade correlation
atgorithm to include cross-validation learning, It
was found that the guidance system improved the
results on a validation set and increased the
maximum flow prediction. The use of a cubic
potynomial as the output activation function was
found to further enhance the capability of the
ANN models 1o extrapolate beyond the calibration
range. However, no system was developed to
detect uncharacteristic data, apart from comparing
the maximum and minimum values in the training
and validation sets.

Other  reat-time  hydrological  forecasting
experiments have been investigated in the
titerature [see Coulibaly et al., 2000a; Coulibaly et
al,, 2000b; Thirumalaiah and Deo, 2000],
however, to date no system has been developed to
determine when the deployed model needs to be
recalibrated. In general there are three options
available to the modeller: {1} no recalibration, (2}
recalibration at some arbitrary time interval, and
{3} recalibration given some knowledge of when a
pattern that is outside of the training domain is
encountered.

Recently, Bowden et al. [2001b} proposed a
method for diagnosing uncharacteristic data
patterns using a self-organizing map (SOM). It
was found that by combining the new data with the
training data and clustering these data using the
SOM, regions of poor performance could be
identified by examining the resulting clusters. If
the new data formed a cluster that did not contain
training data, then these data were diagnosed as
uncharacteristic. It was found that the ANN model
performed poorty on these uncharacteristic data
since it had not considered these events during
wraining. This is because ANNs are exceptionally
good at interpolation, but since the activation
function {usually sigmoid or tanh) saturates,
extrapolation is unreliable. To determine when the
ANN is extrapolating rather than interpolating, it
is necessary to know what the distribution of the
training data is, however, this can be rather

difficult to determine with a large number of
inputs. One way to address this problem is by
plotting histograms of the inputs in the training set,
to see which values are most common and which
values are rare or absent from the training set. But
this is somewhat subjective and becomes
increasingly difficult as the number of inputs
increases. In the present study, a SOM is used 1o
compare multivariate distributions and diagnose
when a new m-dimensional data pattern differs
from all m-dimensional patterns in the training set,
where m is the number of inputs.

In this paper, a hybrid model has been empioyed
consisting of two important components. The first
is a SOM that combines ecach new input pattern
with the data used for training and determines if
the new pattern clusters within the training
domain. The second is a backpropagation network
{(BPN} which is used to perform the forecast.
When a new input pattern is found to be
uncharacteristic, there is a large degree of
uncertainty associated with the corresponding
forecast and consequently, a warning is issued.
This pattern is then placed in the training set.
Once the corresponding output has been coliected,
the BPN is retrained with this pattern included. In
this way, the ANN model is able to adapt to new
information as it i3 encounterad.

To assess the efficacy of this approach, a case
study is considered in which the hybrid model is
used to forecast salinity in the River Murray at
Murray Bridge {(South Australia) 14 days in
advance. The mode! is developed using 6 years of
daily salinity, flow and river level data. Once
developed, it is used as an operational model and
is trialled on a farther 3-year real-time forecasting
test period consisting of independent data. In this
paper, three  recalibration  scenarios  are
investigated, including: (1) no recalibration, (2}
recalibration after each new data sample is
collected, and (3} recalibration when an
uncharacteristic pattern is detected by the SOM
procedure.

2. CABE STUDY

The real-world case study used to demonsirate the
effect of different retraining regimes is that of
forecasting salinity in the River Murray at Murray
Bridge, South Australia, 14 days in advance.
ANN models have previously been developed for
this case study by Maier and Dandy [1996] who
used daily salinity, flow and river level data at
varions locations in the river as input variables for
the period 01-December-1986 to 30-June-1992.
Data from this period and at the same locations
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were also used in the present study. Mater and
Dandy [1996] found that the ANN models trained
on the input set shown in Table 1 performed best
for this case study. Consequently, these 51 inputs
were used to develop the BPN model. A
description of how these inputs were determined is
given in Maier and Dandy [1996).

Table 1. Summary of Model Inputs,

Variable Location Lags (days) Tﬁsi
Salinity Marray Bridge 1301 G
Salinity Mannum L3, .15 8
Salinity Morgan IRC TS % 8
Salinity Waikerie L2, ., 58 5
Salinity Loxton 12,5 5
Flow Overland Corner -19,-17, .., 7 14
Level Lock 1 Lower -3,-1,..5 3
Totaf Number of Inputs 31

An additional data set consisting of daily salinity,
flow and river level data at various locations in the
river for the period 01-July-1992 to 30-June-1993
were used to simulate the real-time forecasting
period,

3. METHODS
3.1 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) was developed
by Kohonen [1982] and arose from attempts to
model the topographically organized maps found
in the corlices of mamma! brains.  The
underlying basis behind the development of the
SOM was that topologically correct maps can be
formed in an n-dimensional array of processing
elements (PEs) that did not have this injtial
ordering to begin with. In this way, input stimuli,
which may have many dimensions, can come (o
be represented by a one- or two-dimensional
vector which preserves the order of the higher
dimensional data and provides a non-parametric
estimation of the underlying distribution.

The SOM employs a type of learning commonly
referred to as competitive, unsupervised or self-
organizing, in which adjacent cells within the
network are able to interact and develop
adaptively into detectors of a specific input
pattern [Kohonen, 1990

Sorting items into categories of similar objects is a
challenging, yet frequent task. The SOM achieves

this task by nonlinearty projecting the data onto a
lower dimensional display and by clustering these
data. However, the SOM has only been used in a
limited number of water resources applications.
Applications have included the estimation of
rainfall rates from infrared satellite and ground
surface data [Hsu et al., 1997], the identification of
flow regimes in horizontal air-water flow in an
experimental pipeline [Cai et al., 1994] and the
classification of flood data into ciﬂsses defined by
Representative Regional Catchments (RRCs) [Hall
and Minns, 1999]. Details of the SOM algorithm
are given in Bowden et al. [2001b]

The SOM implemented in this research consisted
of a 20 by 20 Kohonen layer grid. There is no
theoretical principle for determining the optimum
size of the Kohonen layer grid {Cai et al., 19G4],
hence, the grid size was optimized by trial-and-
error.  The learning rate used in the 30M
decreased Hnearly from an initial value of 9.7
down to 0.01 using

a(z’)=maxﬂa(0)(l— : )J,G.O}.J (1
rlen

where ofi} is the learning rate af iteration 7, e40) is
the initial learning rate and rlen is the running
length of the training i.e. number of samples fed to
the network, The neighbourhood size (V) was also
a function of the training time and its size decayed
linearly as training progressed, in accordance with

N=max{int(i}(1— ! }],1} (2)
rien

where D is the maximum dimension of the
Kohonen layers columns  and  rows le
D=max{(column dimension, row dimension). The
SOM was trained for a total of 300 epochs.

3.2 Backpropagation Network (BPN)

A BFN model was developed using the available
data from the period Ol-December-1986 to 30-
June-1992. The data were divided into training,
tesnn0 and validation sets by using a genetic
algorithm (GA} so as to minimize the statistical
difference (as measured by the mean and standard
deviation) between training, lesting and validation
data sets [Bowden et al., 2001b].

Maier and Dandy [1998] conducted empirical
trials on the salinity dala set and determined that
30  hidden layer nodes provided optimal
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performance. Consequenty, a network with 51
nodes in the input layer, 30 hidden layer nodes and
1 node in the output layer was used for the BPN
component of the hybrid model developed in this
study. To ensure that overtraining did not oceur
(i.e. when the network performs well on the
training data, but poerly on independent test data),
cross-validation was used as the stopping criterion.
In this approach, a test set is used to determine the
BPN’s generalisation ability, The test sel root
mean square error (RMSE) is calculated every
1000 iterations and the network with the best test
results is saved during the run.  After 100
iterations with no further improvement in the test
set resuits, training is stopped and the network that
performed best on the test sef is used as the final
modei.

3.3 Hybrid SOM-BPN Model

A hybrid model {Figure 1) was developed that
utilises a SOM to determine when an
uncharacteristic input pattern is encountered and &
BPN to perform the forecasting. After the SOM
clusters the data, the proposed hybrid model
diagnoses each new pattern as either characteristic
or uncharacteristic depending on the presence or
absence of training data in the new sample¥
cluster,
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| sets
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Figure 1. Hybrid SOM-BPN model
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To help ensure that the lraining and test sets
remain statistically representative of the same
population, new samples are aliernately placed in
each set. When a new sample is added io the
training set, it is then clustered using the SOM
component of the hybrid model. If the new sample
is found to be uncharacteristic, it s necessary to
wait 14 days (the forecasting intervaly for the
corresponding output before retraining the BPN.
However, if the new sample is found to be
characteristic data, the currenily saved BPN is
used to obtain the [4-day forecast.

When the BPN is retrained, the weights are
initialised by using the saved weights of the
previous model. This was found to significantly
decrease the time needed to retrain the BPN.

4, RESULTS AND DISCUSSION

The first scenario investigated was the eftect of
not retraining the BPN model. The BPN model
was developed using the data from the period (1-
December-1986 to 30-June-1992 and the train, test
and validation set RM™SEs were 31.4, 30.3 and
31.2 EC units, respeciively. Figure 2 shows the
forecasts obtained without retraining the BPN
mode] for the reai-time forecasting test period.
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Figure 2. Results of not retraining the BPN model

for the real-time forecasting test period (July 1992

- June 1995). The Fourier Series Seasonal Mean is
aiso shown for the salinity at Murray Bridge.

In Figure 2 it can be seen that the model performs
poorly on all peaks that exceed 900 EC units. In
particular, the model was unable to predict the
magnitude and duration of the major salinity peak
that occurred in the third year at around day 900.
This is also shown by the high RMSE obtained by
this model for this test period (98.5 EC units). i is
interzsting to note that a previous study conducted
by Bowden et al. [2001a], identified that this
major salinity peak corresponds with an
unseasonal tow flow event. A Fourier series was
fitted to the mean monthly salinity at Murmray
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Bridge for the model development period (i.e. 01-
December-1986 to 30-Fune-1992) and this is
shown in Figure 2 for the real-time forecasting test
period 01-July-1992 to 30-June-1995. It is evident
that the high salinity/low flow event that ocecurred
in the third year is unseasonal and unlike any of
the data used in calibrating the BPN model. This
has been shown by Bowden et al. [2001b], who
used a SOM to diagnose that these data are outside
of the training domain. Consequently, the mode!
was unable to match the large peak.

The second scenario investigated the effect of
retraining the BPN network after each sample is
obtained. It must be noted that to simulate an
operational model, 14 days must elapse until the
relevant output can be obtained before retraining
of the model can commence. The results of this
retraining scenario for the real-time forecasting
test period are shown in Figure 3.
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Figure 3. Results of retraining the BPN model
after each sample for the real-time forecasting test
period (July 1992 - June 1993),

As expected, this retraining scenario provided
better predictions for the peak salinity values and
this is reflected by a lower RMSE (63.8 EC units)
in comparison with the scenario where no
retraining  was  performed. Of  particular
importance is the improved ability of the model to
predict the major salinity peak. However, a
concern is the large degree of noise in the forecast
that manifests isell in the last year of the test
period. It was found that this noise could be
ameliorated by resplitting the data after two years
into training and test sets and retraining the model.

The results of resplitting the data are shown in
Figure 4. Whilst still underpredicting the peak
value, the forecasting noise was reduced and the
RMSE decreased from 63.8 EC units to 61.1 BC
units. Therefore, it is hypothesised that noise in
the forecast was due to the waining and test sets
becoming statistically unrepresentative of the full
data set.
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Figure 4. Results of retraining the BPN model
after each sample (with data resplit into training
and test sets after 2 years) for the reai-time
forecasting test period (July 1992 - June 1993).

The third scenario investigated involved the use of
the hybrid SOM-BPN model to selectively retrain
based on the identification of uncharacteristic
samples, As with the previous scenario, in order
to reduce the forecasting noise it was better to
respiit the data into training and test sets after two
years. The SOM-BPFN model’s results for the real-
time forecasting test period are shown in Figure 5.
The hybrid model performed particularly well in
forecasting the peak in the second year. It
underestimated the major pezk in the third year,
but for this peak it was able to equal the
performance of the model that was retrained after
every sample (Figure 4).
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Figure 5. Results of the hybrid SOM-BPN model
{with data resplit into training and test sets after 2
vears] for the real-time forecasting test period
{July 1992 - Fune 1595).

There were 178 warnings issued in the 3-year
pericd, which indicated 16.3% of the patterns in
this test period were diagnosed as uncharacteristic,
Despite only retraining 16.3% of the time, the
SOM-BPN model was able to obtain a RMSE of
58.1 EC units. This represenis an improvement in
the RMSE of 4.9% when compared with the model
that retrained 100% of the time. In addition, the
results from the SOM-BPN represent a 41.0%
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improvement in the RMSE when compared with
the 1o retraining scenario.
5. CONCLUSIONS
This paper presents a new retraining methodology
for real-time forecasting models based on a hybrid
SOM-BPN model. In addition, the performance of
the SOM-BPN model was compared with wo
alternative retraining methods involving no
retraining and continuous retraining, respectively.
All three retraining methods were trialled on a 3-
year real-time forecasting period using real data
from the River Murray. The resuits indicate that
the SOM-BPN model provides an effective means
of identifying when retraining is required. The
front-end 5OM component of the hybrid model
was able to diagnose the data that were outside of
the training domain and retrained 16.3% of the
time during the 3-year real-time forecasting test
period. This resulted in a significant improvement
over the scenario in which the ANN model was
not retrained.  In addition, selectively retraining
based on the presence of uncharacteristic data was
found to produce a lower RMSE when compared
to continuously retraining after each new sample.
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