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Abstract:  Well-calibrated river water guality models are required to assess the effectiveness of various
management strategies, which are aimed at improving river water quality. Model calibration (or parameter
estimation) is an important part of overall model development. A river water quality model was developed
for Yarra River in Victoria {Australia) and was calibrated using a genetic algorithm (GA). In general, the
efficiency of GA depends on the proper selection of GA operators, which prompted an investigation of these
operators in achieving the ‘optimum’ model parameter set for the Yarra River water quality model. This was
conducted by considering a hypothetical river network water quality model with both insensitive and
sensitive teaction parameters and later verified by the Yarra River water quality model. Based on limited
numerical experiments, it was found that GA with a reasonable operator set obtained from literature was
capable of achieving a near-optimum model parameter set in river water quality models. However, if is
recommended that further studies be conducted to verify the above findings.
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parameter coding, population  initialisation,
selection of subsequent populations, crossover and
mutation. The reader iz referred to Goldberg
{19891 for definitions of these terms.

1. INTRODUCTION

Successful management of river water quality
requires the development and use of river water
quality models. Mode! calibration (or parameter
estimation) is an important part of overall model
development. Some model parameters can be
physically measured, while the remaining model
parameters should be estimated through model
calibration. Model calibration is generally done
through a trial and error iterative process by
comparing model predictions with observations.
This method is time consuming, and can also miss
the ‘optimum’ model parameter set. Recently,
genetic algorithm (GA) optimisation has proven to
be successful and efficient in identifying the

The significance of GA operators on the optimised
model parameter set has been studied in a number
of water resource applications. The most
comprehensive study was on a rainfzall and runoff
application by Franchini and Geleati [1997]. They
found that the GA operators did not have any
significant impact on the optimam model
parameter set, and therefore stated that a robust
GA operator range was adequate, On the other
hand, Davis {19911 commented that the optimal
GA operator set varies from problem to problem,

‘optimum’ parameter set for river water quality
models [Mulligan and Brown, 1998]. GA is 2
global optimisation technique that is based on the
concepi of namral selection and genetics
[Goldberg, 1985].

In general, the efficiency of GA depends on the
proper seiection of GA operators, which are
essentially the components thar make up the
overall GA process. The GA operators deal with

but a reasonable robust GA operator range can
provide an efficient solution. The reasonable
robust ranges for various GA operators {(for
crossover and mutalion rates) are given in
Goldberg 11985]. Mulligan and Brown [1998], in
their water quality modelling application, explored
the effect of constant mutation rate throughout the
mn against varying rates, and found that the
constant rate was efficient. As seen from these
studies, the importance of the GA operators in
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achieving the ‘optimum’ mode! parameter set was
inconclusive.  Thersfore, a detailed study was
conducted to investigate the effect of GA operators
on the mode! parameter optimisation of Yarra
River Water Quality Model (YRWQM). The
paper begins by introducing the GA optimisation
technique. The aims and methodology are then
discussed. A detailed study of GA operators on a
hypothetical river system is discussed, followed by
a similar study on YRWOQM.  Finally, the
conclusions drawn from these studies are
presented.

2. GENETIC ALGORITHM

GA is a powerful optimisation technigue that has
been applied successfully in many disciplines {Paz,
1998]. It is based on concepts of natural selection
and genetics, and therefore, the terminology used
in GA is borrowed from genetics. The GA process
as applicable to model parameter optimisation of
river water quality models is described below.

Every model has its own model parameters,
According to the genetics terminology, each model
parameter is a gene, while a complete set of model
parameters is a chromosome. EHach parameter in
GA is encoded using binary, gray and (recently)
real coding systems [Wardlaw and Sharif, 1999].
Bach GA run consists of a number of generations
with constant population size. The process of GA
begins with an initial population of a user-defined
number of model parameter sets, which are chosen
at random or some pre-defined rule, within 2
specified parameter range (search space). Each
meodel parameter set is then evaluated by an
objective function (e.g. simple least squares) to
yield its fitness value [Sorooshian and Gupta,
19931,

The second and subsequent populations are
generated by combining model parameter sets with
high fitness value from the previous popuiation
{parent) through selection, mutation and crossover
operations to produce successively fitter model
parameter sets {offsprings).  The selection GA
operator favours those parent parameter sets with
high finess value to those of lower fitness value in
producing offsprings. The mutation operator adds
variability to randomly selected model parameter
sets by altering some of the values arbitrarily. The
crossover operator exchanges model parameter
values from two selected parent model parameter
sets.  Several generations are comsidered in one
GA run, until no further improvement (within a
certain tolerance) is achieved in the objective
functions.

3. AIMS AND METHODOLOGY

The main aim of this study is to investigate the
effect of GA operators on YRWQM model
parameter optimisation. In this investigation, an
initial hypothesis was made that the GA operators
have an effect on the ‘optimised’ modsl
parameters. The following river networks were
considerad to study this hypothesis.

e A hypothetical river system with known
insensitive and sensitive model parameter sets.
= YRWOM river network.

The QUALZE [Brown and Barmwell, 1987]
maodels of the twe river networks were linked (via
input  and output files) with GENESIS
[Grefenstette, 19951 - a standard GA software
package. The hypothetical river metwork model
was initially assembled using the data of a
hypothetical river network (with no modifications)
of Chapra [1998], which deals with modelling of
Dissolved Oxygen (DO).  An uncertainty and
sensitivity analysis of model parameters was then
conducted using Monte Carlo simulation (MCE),
The criterion used to determine the sensitivity of
model parameters fo output water guality was
based on the relative deviation ratic {RDR). A
critical value of RDR of | was considered in this
study, as in Hamby [1994]. Any model parameter
with RDR greater than 1 was considered to be
sensitive and vice versa. The details of uncertainty
and sensitivity analysis in relation fo water quality
model parameters are described in Ng and Perera
(20013, The model parameters assembled using
data of Chapra [1998] was found to be insensitive
to DO response.  After modifying the effluent data
of Chapra [1998], the model parameters were
shown to be sensitive. Therefore, two models
were developed using the hypothetical river
network, one with insensitive model parameters
and the other with sensitive parameters.

The hypothesis was initially tested with the
hypothetical network modsls using GA operators
obtained from the literature, subject to capabilities
of GENESIS (which is called ‘LIT" set in this
papery. Althongh gray and binary coding systems
were available in encoding model parameters in
GEMNESIS, the former was used singe it is an
improvement of the latter [Goldberg, 19891
Model parameter set initialisation can  be
performed randomiy or heuristically, however, the
random method was used in this study. Linear
ranking together with stochastic universal
sampling were used for selection of the ‘fitter’
mode] parameter sets for the next generation. A
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population size of 125 and 40 generations
{equivalent of 5000 model parameter sets) were
selected based on the study by Franchini and
Galeati {1997]. The mutation rate of (.03 and
crossover rate of 0.6 were obtained from Muiligan
and Brown [1998]. The commonly used simple
least squares cbjective function was used in this
study. Based on the 'LIT GA operators, the
model parameters {i.e. reaction rales} were
optimised for both insensitive and sensitive
models. Since objective function value may not
vary greatly for a number of ‘hest’ model
parameter sefs, it was also necessary to select a
certain number of model paramster sets from the
last generation as the ‘optimum’ sets. However,
no guidance was found from the literature on this
issue, and therefore it was studied first,

Depending on the outcome of using the ‘LIT’ set
in achieving convergence to the ‘optimum’ model
parameter set, a second stage of the investigation
was conducted for both insensitive and sensitive
models, provided the models did not converge.
The second stage involves a  sysiematic
optimisation of GA operators, For each
combination of GA operators within the second
stage, a GA optimisation of model parameters is
conducted. The GA operators considered in the
second stage optimisation were population size,
and mutation and crossover rates, because the
other operators (parameter coding, population
initialisation and selection) were restricted by the
capahilities of GENESIS,

The findings obtained from the hypothetical
models were then tested on the YRWOQM
parameters, using the same method as for the
hiypothetical models. In both models (ie.
hypothetical and YRWQM), only the reaction
parameters were considered.

4. HYPOTHETICAL RIVER WATER
QUALITY MODEL

The river network systemn and the data used for
this part of the study was extracted from an
example given in Chapra {1998}, The river
network was modelled using 6 reaches. Each
reach was sub-divided into 2 number of
computational elements of I-km length, which
provides sufficient resolution for water quality
modelling. The reaction ratez of CBOD, CBOD,
and SOD of both insensitive and sensitive models
and other input data were used in QUALZE to
produce the output DO concentration. This output
DO was then considered as the observed
concentrations for the GA optimisation.  The

reaction rates were then treated as unknown, and
were optimised through GA. The search space for
respective reaction raies used in GA optimisation
are shown in Table 1, togsther with the actual
reaction rates. The use of this relatively large
search space allows the investigation of use of GA
in achieving the ‘optimum’ model parameter set.

Table 1. Search space and actual reaction rate for
hypothetical example.
Reaction Rates Search Actual
space reaction rate
CBOD decay (CBOUD) 0004307 0.8
CBOD Setling (CROD)  0.03-1.51 825
Sediment Oxygen G.08-7 A0
demand (S0D)
*Modified from Bowis et al. [1985]

4.1 Parameter Sets from Final Generation

An experiment was first conducted o select a
certain number of model parameter sets from the
last generation of the mun as the ‘optimum’
parameter sets. The effect of population size was
hypothesised as a factor affecting these ‘optimum’
maodel parameter sets. Therefore, four population
sizes of 125 (e LIT set), 250, 300 and 1000
were investigated.

The results {i.e. objective functions vorresponding
to number of parameter sets) from the last
generation of each run were extracted and ranked,
The ranked objective functions were plotted as in
Figure 1 {for population size of 125}, showing the
rate of change of the objective function value
(mg/L)y with respect fo number of model
parameter sets in the last generation. This plot
indicates the slope changes in the objective
function value at increasing rales, as more
parameters are considered.  Although the first
slope changes at around 3 model parameter sets, it
was more appropriate to adopt the second slope
change (at § model parameter sets), since the
objective function value is fairly iow with & model
parameter sets. Similar results were seen for the
other population sizes, with rapid increase in slope
after 10 parameter seis. Therefore, the mean of the
10 best model parameter sets, was considered as
the final model parameter set.

4.2 Model with Insensitive Parameters

After conducting the GA optimisation for the
nsensitive model parameters, the ‘optimum’
reaction rates was compared with the actual
reaction rates {Table 1) and found that the
maximum difference was around 9%. Therefore,
it was considered that the model parameters did
not converged.  The ‘optimum’ model parameter
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Figure 1. Objective function Vs number of
parameter set.

set obtained was then used in QUALZE to predict
the DO concentration.  Although the model
parameters did not converge, the difference of DO
response from both sets of model parameters was
insignificant {within 0.5%). This was because the
reaction rates were insensitive to output DO,
Since the convergence was not achieved in the
insensitive model, a systematic optimisation of GA
operators was conducted to investigate whether the
GA operators play a role in achieving convergence
in an insensitive model.

The first GA operator cousidered in  this
‘optimisation” investigation was the effect of
population size, which may have some influence
on the ‘optimum’ model parameter set.  Four
different population sizes of 125 {(le. ‘LIT set},
250, 500 and 1000 were investigated. The number
of simulations {or model parameter sats) used for
all these population sizes were constant at 32,000,
which was the maximum lmit in GENESIS., It
wag found that population sizes of 125 and 250
facilitated the convergence of the model
parameters, while the model parameters did not
converge with population sizes of 500 and 1000.
This result was consistent with Franchini and
Galeati {1997], where they stated that large
population sizes require large number of
simulations to reach convergence. Since the
population size of 250 required more QUALZE
simulations to reach the ‘opthmum’ set compared
to the population size of 125, it was not considered
any further. Therefore, the population size of 125
with 190 generations (equivalent of 23,750
QUALZE  simulations} was adopted as  the
‘optimum’.

The next GA operator optimisation was on
mutation and crossover rates. Sines these two
rates  simultaneously determine the rate of
convergence of model parameters, they should be
studied together. However, initially the range for
each of these rates was optimised independently to
narrow down the range for these rates.

Twenty-four different mutation rates were
explored within the range of 0.001-1.0 at varying
increments considering more values for lower
rates, while 16 crossover rates were considered
within the range of 0.23-1, at equal increments of
0.05. 1t was found that the model parameters did
converge within the mutation and crossover rate
ranges of 0.001-0.03 and 0.45-G.85 respectively.
Based on these ranges, 63 different combinations
of mutation and crossover rates were considered in
GA optimisation of model parameters through
variable increments for mutation and constant
increment of 0.05 for crossover rate. The mean
and the coefficient of variation {CV) of the best 10
parameter seis from each of the 63 runs after
convergence of model parameters  were
determined. Contour plots of mean and CV were
produced with respect to mutation and crossover
rates for all three reaction parameters. One such
plot {i.e. mean value for CBOD,) is shown in
Figure 2. As shown with the arrows in Figure 2,
several combinations of mutation and crossover
rates can yield the ‘optimum’ solution of .25 for
CBOD,. Similar contour plot of CV was produced
for CBOD,, The ‘optimum’ CBOD, was found
from the contour plots of mean (Figure 2} and CV
considering the vaiue of 0.25 {or closer} and 0 (or
closer) respectively, but for the same region of
mutation and crossover rates.

Afier considering the contour plots for both mean
and CV for all three model parameters, it was
found that mutation and crossover rates of 0.003-
0.007 and  0.66-0.72  respectively  can
simulianeously converge all three model
parameters to their actual values. However, the
middle vatues of the above ranges (i.e. mutation
rate of 0.005 and crossover rate of 0.69) were
adopted as the ‘optimised’ rates.

A final GA optimisation run was then conducted
using the GA operators obtained from the
‘optimisation’ as described above, and found the
‘optimurmt’ reaction rates to be within 1% of the
actual reaction rates, compared to 9% previousty
found with "LIT" GA operator set. However,
when thess reaction rates were used in QUALZE
simuiation, the output DO concentration did not
show significant changes to the concentration
corresponding to reaction rates obtained from the
‘LIT” set. This experiment shows that it is not
necessary to optimise (A operators for an
insensifive model, and that reasonable values for
(GA operators obtained from literature can be used
to optirnise the reaction rates.
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Figare 2, Mean contour plot on mutation and
crossover rates for CBOD,.

4.3 Model with Sensitive Parameters

A similar procedure was used for the sensitive
model, as for the insensitive model. The
‘optimum’ reaction rates were then compared with
the actual and it was found that the maximum
difference was less than 2%, which can he
considered as ‘converged’. This model parameter
set was then used in the QUALZE simulation to
determine the predicted DO concentration. The
percentage difference between measured and
predicted DO concentration was around 1%, which
was considered sufficient in a water quality
modelling study. Since a standard ‘LIT GA
operator set was able to optimise reaction rates in a
sensitive model and reach convergence, it can be
said that the GA operators do not play a rele in 2
sensitive model.

5 YRWOM MODEL

The Yarra River was first discretised, into a
number of reaches that have uniform pollution
loading, hydraulic and hydrological characteristics
based on the locations of Sewage Treatment Plants
(8TPs), the confluences of tributaries and the
water quality sampling stations. When the reaches
defined based on above criteria were long, they
were further sub-divided. In total, 29 reaches were
considered. Each reach was then sub-divided into
I-km computational glements. This information
together with flow and effluent data were used in
building the YRWQM. The details are given in
Ng and Perera {2001], which also stated that the
YRWOM was an insensitive model, based on 2
detailed uncertainty and sensitivity analysis of
model parameters. Therefore, the procedure used
for the insensitive hypothetical modsl (Section
4.7y was used for YRWQM. Total Kjeldahl
Nitrogen (TKN), Total Nitrogen (TN), Total
Phosphorus (TP} and DO were considered in
YRWOM and their respective reaction rates in GA

optimisation. Similar to the hypothetical example,
the parameter search space used in the YRWQM
was large,

The reaction rates obtained from the GA
optimisation using both GA operator sefs were
different, but of & similar order of magnitude. The
percentage difference between the 2 ‘optimum’
model parameter sets was from 6% to 30% on
average for reaction parameters of TKN, TN, TP
and DO considered in YRWOM, These 2 reaction
rates sets were then used in YREWOQM and the
differences in the outputf responses of TKN, TN,
TP and DO were compared. The comparison on
TN (as an example) is shown in Figure 3. As can
be seen from this figure, the difference in TN is
not great considering that there are differences in
the reaction rates values. Similar results were
found for TKN, TP and DO.

#@ Observed ~—o—literature - - & - -Optimum

Q
o

TN (mgh)

o 50 100 180 200

Disiancs from Upper Yara

Figure 3. TN profile using ‘LIT and
‘optimised’ GA operalor sets.

This confirmed the findings of the hypothetical
insensitive model that the effect of GA operators
in an insensitive model is insignificant in
optimising mode! parameters, and that reasonable
values of (A operators obtained from the
iiterature can be used. However, this finding
requires further verification Therefore, the ‘LIT”
set was used in the YRWOM-GA calibration.

6. SUMMARY AND CONCLUSIONS

Although the importance of GA operators on
modal parameter optimisation has been studied in
the past, the findings were Inconclusive.
Therefore, a comprehensive study on  the
significance of GA operators was conducted using
a hypothetical river network model with
insensitive and sensitive model parameters, and
verified using the Yarra River Water Quality
Model (YRWQM) of which model parameters
were found to be insensitive. The reaction rates in
both models were considersd in parameter
optimisation, and the model parameter sezarch
space was large enough to test the capability of
GA in finding the ‘optimum’ mode! parameter set,
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In both models, QUALZE sofiware was used fo
model river water quality. QUALZE uses standard
river water quality advection-dispersion mass
transport equation, which are also used in other
river water quality software tools. Therefore, it
can be said that the model structure is the same in
all river water quality softwars,

A set of literature {‘LIT’} GA operators was
initiaily used in the hypothetical model with both
insensitive and sensitive model parameters. 1f was
found that the “LIT" set was able to achieve ths
‘optimum’ mode! parameter set for the sensitive
mode!, but not for the nsensitive model. A
systematic "optimisation’ on the GA operators was
then undertaken to optimise the set of GA
gperators i the insensitive model to reach
convergence of the model parameters. Using both
‘LIT’ and ‘optimised’ set of GA operators in
QUALZE model, no differences were ghserved in
D0 response due to insensitivity of the model
parameters. This study showed that although the
(GA operators were significant in an insensitive
model in reaching the ‘optimum’ mode! paramster
set, #ts overall effect in predicting water quality
was insignificant. Similar results were found with
YRWQM with water guality responses of TEN,
TN, TP and DO.

In conclusion, based on limited numerical
experiments, it was found that the use of GA in
optimiging reaction rates of river water quality
models can be done efficiently by selecting robust
GA operators from the literature,  Although the
‘optimisation’ GA operator sets can provide the
‘optimum’ reaction rates set, it is necessary o
consider the amount of effort required in achieving
such accuracy, which does not contribuie a great
difference in overall water quality prediction, It
should be noted that these conclusions are based
on limited numerical experiments and therefors, it
is recommended that further studies should be
conducted wusing different river setfings to
substantiate the findings of this study.
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