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Abstract: The Australian River Assessment System (AusRivAS) is a nation-wide program designed to 
assess the health of Australian rivers and streams.  The general AusRivAS method involves the establishment 
of a database of reference sites, which are sites that are considered to be minimally affected by anthropogenic 
impacts. These sites are then grouped into clusters of similar macroinvertebrate communities. The clusters 
are analysed to find relationships between the physical, geographical and chemical properties of sites in a 
cluster and the corresponding macroinvertebrate communities. The relationships found are then used to 
predict the macroinvertebrate communities at non-reference sites that would be expected if these sites were 
equivalent to least disturbed reference conditions. To determine the level of river health, the expected 
macroinvertebrate community is compared with the observed community.  As part of AusRivAS, the 
clustering step is conducted using the statistical Unweighted Pair Group Arithmetic Averaging (UPGMA) 
method.  A potential shortcoming of this approach is that it uses a linear performance measure for grouping 
similar data points.  A recently developed approach for clustering ecological data (MIR-max) overcomes this 
limitation by using mutual information as the performance measure.  In this paper, an alternative to the MIR-
max technique (MIRA4) is proposed, which uses genetic algorithms for optimising the overall mutual 
information of the ecological data clusters.  The MIR-max and MIRA4 approaches are applied to the South 
Australian combined season riffle AusRivAS data, and the results obtained are compared with those obtained 
using the UPGMA method.  The results indicate that the overall mutual information values of the clusters 
obtained using MIR-max and MIRA4 are significantly higher than those obtained using the UPGMA method, 
and that the use of genetic algorithms is successful in determining clusters with higher overall mutual 
information values compared with those obtained using MIR-max for the case study considered. 
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1. BACKGROUND 

1.1. Introduction 

The complexity of river ecology makes any 
assessment of river health difficult. Traditional 
assessment measures, including physical and 
chemical parameters, may fail to recognize 
significant changes in river health, such as the 
effect of acute pollution events. In order to 
overcome these limitations, biological indicators 
are being used increasingly. Such indicators 
include macroinvertebrates, fish, algae, diatoms, 
microorganisms and macrophytes.  
Macroinvertebrate data, in particular, have been 
used extensively for the assessment of river 
health, as they are present in almost all rivers, and 
different species have various sensitivities to 

environmental stress. In addition, they only travel 
within a limited range and have a lifespan that is 
adequate for detecting disturbances, while 
sufficiently brief to detect recolonisation after a 
disturbance (Dallas, 2000). 

The River Invertebrate Prediction and 
Classification Scheme (RIVPACS), which is used 
to assess river health in Britain, was the first 
regional-scale model that incorporated the use of 
macroinvertebrate data as an alternative to 
physical and chemical data. Since the 
development of RIVPACS, similar methods of 
assessing river health have been set up in other 
countries, including the Australian River 
Assessment System (AusRivAS) and a similar 
system in California (Hawkins et al., 2000). 
Recently, O’Connor & Walley (2002) developed 
a River Pollution Diagnostic System (RPDS) for 

807



the British Environment Agency using a novel 
information-theoretic clustering system called 
MIR-max designed specifically for the purpose 
(Walley and O’Connor, 2001).  An interesting 
feature of RPDS is that it does not rely on the use 
of reference sites. 

1.2. Australian River Assessment System 

The Australian River Assessment System 
(AusRivAS) was established in 1992 as a nation-
wide program designed to assess the health of 
Australian rivers and streams.  The general 
AusRivAS method involves the establishment of 
a database of reference sites, which are sites that 
are considered to be minimally affected by 
anthropogenic impacts. These sites are then 
grouped into clusters of similar macroinvertebrate 
communities. The clusters are analysed to find 
relationships between the physical, geographical 
and chemical properties of sites in a cluster and 
the corresponding macroinvertebrate 
communities. The relationships found are then 
used to predict the macroinvertebrate 
communities at non-reference sites that would be 
expected if these sites were equivalent to least 
disturbed reference conditions. To determine the 
level of river health, the expected 
macroinvertebrate community is compared with 
the observed community. 

1.3. Clustering of Reference Sites 

 As part of AusRivAS, the clustering of 
references sites is performed using the statistical 
Unweighted Pair Group Arithmetic Averaging 
(UPGMA) method (Davies, 1994), which is an 
agglomerative hierarchical technique (Kaufman 
and Rousseeuw, 1990). Sites are  agglomerated in 
a stepwise fashion to produce a hierarchical order, 
which is presented in the form of a dendrogram 
(Kaufman and Rousseeuw, 1990). As part of the 
agglomeration process, Euclidean distance is used 
as the performance measure to assess the 
similarity of sites based on the macroinvertebrate 
communities present.  

A limitation of agglomerative methods, such as 
UPGMA, is that if clusters are joined 
suboptimally, they can never be separated. Thus, 
errors created in previous steps of the clustering 
process cannot be overcome (Kaufman and 
Rousseeuw, 1990). Another potential shortcoming 
of the UPGMA method is that it uses a linear 
performance measure (i.e. Euclidean distance) for 
grouping similar data points, which can fail to 
capture the non-linear relationships that are a 
feature of ecological systems. 

The MIR-max system introduced by Walley and 
O’Connor (2001) overcomes the limitations of the 
UPGMA approach outlined above.  MIR-max 
clusters the data by maximising the mutual 
information (MI) between the clusters and the 
attributes of the data, and then arranges the 
clusters in a two-dimensional space in a way that 
aims to preserve their relative positions in n-
dimensional data space. The mutual information 
criterion (Fraser and Swinney, 1986) is used as 
the performance measure as it caters for both 
linear and non-linear dependence between 
variables. In addition, the approach is not 
agglomerative, enabling data points to move 
between clusters during the clustering process. In 
this paper, only the clustering aspect of MIR-max 
is addressed. 

As part of the MIR-max approach, mutual 
information is maximised using a hill-climbing 
approach. This involves selecting two sampling 
sites from different clusters and swapping them. If 
the MI score is increased as a result of the swap, 
the change takes place; if not, the sites return to 
their original clusters. This process is continued 
until no improvement is made for a user-defined 
number of iterations (Walley and O'Connor, 
2001). In this paper, an alternative approach for 
maximising mutual information is introduced 
(MIRA4), which uses genetic algorithms as the 
optimisation engine. 

1.4. Objectives of Research 

The objectives of this research are: 

1. To develop an alternative approach for 
clustering ecological data based on mutual 
information (MIRA4) by replacing the hill-
climbing approach for optimising mutual 
information currently used  in MIR-max with 
genetic algorithms (GAs). GAs are robust, 
stochastic search algorithms that are based on 
Darwin’s theory of natural selection. In recent 
years, GAs have been shown to have 
advantages over classical optimisation 
methods (Goldberg, 1989) and have become 
one of the most widely used techniques for 
solving a number of hydrology and water 
resources problems (Vasquez et al., 2000). 

2. To compare the MI between clusters and the 
attributes of the data points to be clustered 
obtained using the UPGMA, MIR-max (use of 
hill-climbing to optimise MI) and MIRA4 (use 
of GAs to optimise MI) clustering approaches 
for the South Australian combined season 
riffle AusRivAS data. 
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2. PROPOSED APPROACH where pijk = number of samples in cluster Ci with
attribute Xj in its kth state, qi = number of samples
in category Ci, rjk = number of samples with
attribute Xj in its kth state and T = total number of
samples. The total mutual information (G) 
between clusters and the attributes of the data
points to be clustered is given by (Walley and
O'Connor, 2001):

The proposed approach for clustering ecological
data involves the use of mutual information as the
performance measure for determining the
similarity between clusters and the attributes of 
the data points to be clustered, and to maximise
the performance measure (i.e. mutual
information) using genetic algorithms. Details of
the proposed approach are given below.
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2.1. Performance Measure In the case of AusRivAS, a reference site is
considered a sample, and (2) measures the 
dependence between the cluster allocation of a 
particular reference site (C) and the state (s) of a 
specific macroinvertebrate community (X) at that 
reference site. The state of a macroinvertebrate
community either refers to presence or absence
(i.e. s = 2), or one of a number of discrete
abundance levels (i.e. s = total number of discrete 
abundance levels). A high MI score signifies a 
high dependence between the cluster allocation
and the state of the macroinvertebrate community.
Consequently, sites that have macroinvertebrate
communities in similar states will cluster
together. By summing the mutual information
score for each macroinvertebrate community
sampled (see (6)), the overall mutual information
for that cluster set can be determined.

The mutual information between two given
variables X and Y is given by (Sharma, 2000):
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where fX(x) and fY(y) are the marginal probability
density functions of X and Y respectively, and 
fX,Y(x,y) is the joint probability density function of
X and Y. The mutual information measures the
reduction in uncertainty of Y as a result of 
knowledge about X. If there is no dependence
between X and Y, then the two random variables
are statistically independent and, by definition,
the joint probability density fX,Y(x,y) would equal
the product of the marginal densities (fX(x) fY(y)).
If this is the case, the MI score would be zero. If, 
on the other hand, the random variables were 
strongly related, the value of MI would be high.

2.2. Optimisation of Performance Measure
When clustering ecological data, the objective is
to determine to which of n clusters each data 
point should belong, such that the mutual
information between the cluster (C) and the m
attributes (X) of the samples is maximised
(Walley and O'Connor, 2001). If it is assumed
that each of the attributes Xj occurs in one of s
states (k = 1 to s), then the mutual information
M(C, Xj) is given by (Walley and O'Connor,
2001):

n

i

s

k jki

ijk
eijkjXCM

1 1

log,  (2)

where ijk = probability of finding attribute Xj in
its kth state in cluster Ci, i = prior probability of
class Ci, jk = prior probability of finding attribute
Xj in its kth state and 
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GAs are heuristic iterative search techniques that 
attempt to find the best solution in a given
decision space based on a search algorithm that
mimics Darwinian evolution and survival of the
fittest in a natural environment (Goldberg, 1989).
In keeping with genetics terminology, the
decision space is referred to as the environment, 
the potential solutions to the optimisation problem
are called chromosomes (or strings of information
that represent a decision set) and the total number
of chromosomes is called the population size.
The iterations of the optimisation process are 
called generations and the GA proceeds by
evaluating the best sets of chromosomes in the
population at each generation.  These sets of 
chromosomes are found by evaluating the
objective function for each chromosome in the
population and by using this objective function
value to indicate the fitness of the chromosomes.
The chromosomes in a population compete with 
each other for survival, based on their fitness 
levels, and more fit individuals are given a higher
probability of mating and reproducing and hence
influencing the following generations.  Through
competition for survival, the population evolves
to contain high-performing chromosomes.
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An advantage GAs have over traditional
optimisation techniques is that they do not require
the use of the gradient of a fitness function, only
the value of the fitness function itself. Another
advantage of GAs is that they search from a
population of points, investigating several areas
of the search space simultaneously, while 
traditional optimisation methods only test one 
scenario at a time. GAs therefore have a greater 
chance of finding the global optimum. For a more
detailed description of GAs, the reader is referred
to Goldberg (1989).

In order to apply GAs to maximising the mutual
information between clusters and the attributes of
the data points to be clustered, the problem has to 
be formulated as follows. 

1. The decision variables are the cluster
allocations of each of the data samples (e.g. 
reference sites). Consequently, the number of
decision variables is equal to the number of
data samples, and the number of values each
decision variable can take is equal to the
number of clusters to which the data samples
should be allocated.

2. A solution consists of cluster allocations for
all data points. Each solution is represented as
a string of integers (i.e. a chromosome), as 
shown in Figure 1. The total number of
integers is equal to the number of data points
(e.g. reference sites), and the values each
integer can take range from 1 to n, where n is 
the number of clusters the data points can be
allocated to (Figure 1).

Figure 1. Representation of a solution as a string
of integers (chromosome)

The optimisation process is summarised in Figure
2. At the start of the process, a number

(population) of solutions are generated at random,
and the “fitness” of each solution is calculated in 
accordance with (6). Next, the “fittest”
chromosomes are selected as potential parents for
the next generation. In this research, tournament
selection was used, where two chromosomes from
the population are paired off at random, and the
“fitter” of the two chromosomes survives,
whereas the other chromosome is eliminated. In
order to ensure that the population size stays 
constant, the number of tournaments conducted is 
equal to the population size. In this research, the
two chromosomes that participate in each 
tournament were chosen from the total population
pool at random, with replacement.

Initialise population

Decode into decision
variables

Have stopping
criteria been met?

Evaluate fitness

Select fittest chromosomes

Crossover

Mutation

No

Yes

Stop

Start

Each integer value
represents the

cluster allocation
of a particular
reference site

…. 4 16 65 213

The value of each
integer can range

from 1 to n, where n
is the number of
clusters the data

points can be
allocated to 

Total number of integer
values is equal to the

number of reference sites
Figure 2. Steps in the genetic algorithm

optimisation process

Next, members of the parent pool, which consist
of the winners of the tournaments, are paired up at
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random and have the opportunity to exchange 
information via a process called crossover. The 
probability that a pair of strings will exchange 
information is referred to as the probability of 
crossover. In this research, two point crossover 
was used, in which two parent chromosomes are 
“cut” at two identical, random locations, and the 
integers in the parent chromosomes (i.e. cluster 
locations) between the cuts are swapped. 

In order to ensure sufficient exploration of the 
decision space, the value of some of the integers 
in a chromosome (i.e. cluster locations) are 
changed at random in a process called mutation. 
Whether mutation of a particular integer occurs is 
governed by the probability of mutation. 

The chromosomes obtained after the application 
of the processes of selection, crossover and 
mutation (i.e. the children) become the parents in 
the next generation and the process is repeated 
until certain stopping criteria, such as the 
completion of a fixed number of iterations, are 
met. In this research, elitism was employed, 
which ensures that the fittest member of a 
generation is guaranteed to survive the selection 
process in the next generation. This ensures that 
there is no reduction in fitness from one 
generation to the next. 

3. CASE STUDY 

3.1. Data 

The data used in the analyses are the South 
Australian combined (Autumn/Spring) riffle 
macroinvertebrate data, which have been 
collected by the South Australian Environment 
Protection Authority (EPA). The data contain 151 
reference sites (i.e. data points) and information 
on 67 macroinvertebrate families (i.e. m = 67). In 
order to compare the results directly with those 
obtained using the UPGMA method currently 
used in the AusRivAS model, only presence / 
absence data were considered (i.e. s = 2) and the 
number of clusters used was 6 (i.e. n = 6).  

3.2. Analyses Conducted 

In order to meet the objectives of this research, 
the following analyses were conducted: 

1. The mutual information between the cluster 
allocation of a particular reference site and the 
state (i.e. presence / absence) of a specific 
macroinvertebrate community at that site  was 
calculated for the clusters obtained from the 
UPGMA method using (2). The overall 
mutual information was then calculated using 
(6). 

2. The available data were clustered using the 
MIR-max software and the mutual 
information  between the cluster allocation of 
a particular reference site and the state (i.e. 
presence / absence) of a specific 
macroinvertebrate community at that site was 
calculated for the clusters obtained using (2). 
MIR-max clustering was continued until there 
was no further change in the objective 
function value for a large number of iterations. 
The overall mutual information was then 
calculated using (6). 

3. The available data were clustered using the 
proposed approach (MIRA4) and the mutual 
information between the cluster allocation of a 
particular reference site and the state (i.e. 
presence / absence) of a specific 
macroinvertebrate community at that site was 
calculated for the clusters obtained using (2). 
The overall mutual information was then 
calculated using (6). The software code 
required for implementing the MIRA4 
approach was developed in Fortran 77. 

In relation to the GA, a population size of 30 
and a stopping criterion of 5,000 generations  
were used for all simulations. The optimal 
probabilities of crossover and mutation were 
determined by trial and error. The 
probabilities of crossover ranged from 0.6 to 
1.0. The best results obtained were for a 
probability of crossover of 0.9, although the 
performance of the GA was relatively 
insensitive to this parameter. Probabilities of 
mutation investigated ranged from 0 (i.e. no 
mutation) to 0.1. The best results were 
obtained when the probability of mutation was 
0.001. The performance of the GA decreased 
significantly for higher values of probability 
of mutation, such as 0.01. 

4. RESULTS AND DISCUSSION 

The overall mutual information values obtained 
using the three clustering approaches investigated 
are shown in Table 1. It can be seen that, for the 
case study considered, the overall mutual 
information values of the MIR-max (11.84) and 
MIRA4 (12.03) approaches were significantly 
higher than that obtained using the UPGMA 
approach (9.14). However, as pointed out by 
Walley and O’Connor (2001), it is not surprising 
that clustering methods that are designed to 
optimise mutual information achieve higher MI 
scores than clustering methods that use an 
alternative performance measure. 

The results in Table 1 also suggest that, for the 
case study considered, the genetic algorithm 
approach proposed as part of MIRA4 is more 

811



successful than the hill-climbing approach for 
optimising the mutual information between 
clusters and the attributes of the samples to be 
clustered used as part of MIR-max. However, 
whilst the GA results obtained are encouraging, it 
is recognised that further comparative studies are 
needed on more challenging case studies, such as 
that used by O’Connor and Walley (2002) to 
develop RPDS, which clustered 6038 samples 
into 250 clusters. In addition, the robustness of 
the two approaches to different starting positions 
in objective function space needs to be 
investigated. Finally, it should be noted that the 
MIR-max approach is still under development, 
and recent trials with an optimisation approach 
similar to simulated annealing have resulted in 
mutual information values that are approximately 
2% higher on average than those obtained using 
the hill-climbing approach currently used. 

Table 1. Overall mutual information obtained 
using the three clustering methods investigated 

Clustering method Overall mutual 
information 

UPGMA 9.14 

MIR-max (hill climbing) 11.84 

MIRA4 (GA) 12.03 

5. CONCLUSIONS 

A new approach for clustering ecological data 
was introduced in this paper, which uses mutual 
information as the performance measure and 
genetic algorithms for optimising this 
performance measure. The approach was applied 
to the South Australian combined season riffle 
AusRivAS data. 

It was found that the overall mutual information 
between clusters and the attributes of the samples 
to be clustered obtained using the new approach 
(MIRA4) was significantly higher than that 
obtained using the UPGMA clustering method  
(12.03 compared with 9.14), which is currently 
used in the South Australian AusRivAS model, 
and slightly higher than that obtained using the 
MIR-max approach  (12.03 compared with 
11.84), which uses a hill-climbing approach for 
optimising mutual information. This indicates that 
the proposed approach shows promise, but further 
comparative tests are needed. 
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