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Despite these advantages, ANNs have frequently 
been criticised for operating as a “black box” 
(ASCE, 2000). An ANN is essentially a tool for 
the nonlinear mapping of inputs to outputs, where 
the primary purpose is to provide a prediction of 
system response rather than to gain an 
understanding of the causal interactions that 
generate the hydrological occurrence. A trained 
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If ANNs are to become more widely accepted and 
reach their full potential as prediction models in 
hydrological modelling studies, some explanation 
capability is required. This paper presents the 
application of a rule extraction procedure in order 
to examine the advantages of rule extraction in 
ANN modelling. 

University of Adelaide, Adelaide, SA, 5005, Australia.  Email: gkingsto@civeng.adela

Abstract: Artificial neural networks (ANNs) have been used increasingly in recent years f
and forecasting of complex hydrological relationships. ANNs have been seen as an attracti
process based modelling approaches, as they are able to extract an underlying relationsh
when knowledge of the physical process is lacking. However, spurious correlations in the da
to the incorrect underlying relationship being modelled and therefore care should be taken n
as black boxes, where data are input into the model and an output is generated with no know
how the prediction was determined. It is essential that the mechanisms being modelled by th
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1. INTRODUCTION
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2. METHODS
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Referring to Figure 1, the contribution of each
input node to the output via each hidden node can 
be calculated as follows:
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2.2. Randomisation Approach 

As Garson’s measure of relative importan
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3. CASE STUDY
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Autoregressive (AR) models are common
to model hydrological time series da
autoregressive model, AR(9), given by (
used to generate a set of synthetic time ser
which were, in turn, used to demonst
importance of rule extraction. This 

ly us
ta. T
6), w
ies d

rate t
model w

utes. 

(6) 

stribut
f 0 a
etic d

enables the capabilities of the proposed method
be investigated without the complication of oth

 such as insufficient data, or t

 constructed to predict the above 
model.  Although the model output only depen

s from xt-1
etwo

er nod

ndomisation Procedure 
bed 
etermin
nifica
erefo
delli

 rel
 a (ne

 rather 
ghts of 

ork that has converged on a local minimu
will differ from those that have globa

ation algorith
ing momentu

method 
ning the 

search
method. 

Comparison of Training Algorithms in 
Estimating the Underlying Relationship 
The rule extraction algorithms were used to 
compare the relative predictive capabilities of the 
two training algorithms employed. The overall 
connection weights between input and output 

determine how 
g algorithm was in estimating 

e of the 
re trained on 

udes a random 
rmance of each 
n its ability to 
tionship in the 

o this a second 
ver this set did 

random noise component. 
Performance measures given in the following 

based on a comparison of the network 
t. 

st be relied upon 
nce of an ANN. 
e measures such 
edictions and 
when trying to 

nterpret how well the model fits the underlying 
e included in the 
he data may be 

ved RMSE, 
relationship will 

 during different 
e randomisation procedure using the 

SCE algorithm, were compared in order to 
the use of an error measure 

such as the RMSE is sufficient to ascertain which 
eralisation ability 

 therefore best predictive performance when 

nputs and 

or determining 
yer nodes was 

 had to be retrained 
whenever inputs or hidden nodes were pruned 
from the network.   

The results of the procedure are presented in 
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from each training algorithm is presented in terms 
of the inputs determined to be significant, the 
number of hidden nodes and the RMSE between 
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4. RESULTS & DISCUSSION
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Table 1. Resulting “optimal” networks.

ropagation SCE

23 AC1i ii

3
 (6)

where Ci is the overall connection weight of input
t i.

Table 2. Overall connection weights of 
i .

Input Actual Ba pagation SCE

Backp

Significant Inputs xt-1, xt-4, xt-9 xt-1, xt-4, xt-9

No. of hidden nodes 0 0

RMSE 0.125 0.100

i and Ai is the actual weight for inpu

The randomisation procedure was a
correctly identify which inputs were significan
predicting the output when each of the
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linear process and
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Table 2 gives a comparison of the actual weights
associated with each driving input and the overall 
connection weights in the “optimal” networks
determined by the randomisation process using
the alternative training algorithms. The error
measure given in Table 2 was calculated by:

1 0.31

4 69 -0.68a
network structure is that containing no
nodes. T s also correctly identified
randomisation procedure.

It took 4 iterations to achieve the final
described in Table 1 using the SCE alg
whereas it took 7 iterations using t
backpropagation algorithm. Therefore, it
considered that the randomisation proce
able to determine the optimal network s
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Error 0.065 0.057

It can be seen that each training
able to estimate the AR(9) mo
accuracy, especially considering
data contained added noise and
activation function was used.
network trained by the SCE
slightly more accurate than the net
backpropagation. However,
previousl

9 -0.5 -0.57 -0.56

th backpropagation algorithm is sligh

ough this may be a function of the
criterion used in each case.

4.2. Estim f Underlying Relation

algorithm was
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that the training
a nonlinear

The resulting
algorithm was 
work trained by
as mentioned

y, this may be due to the stopping
criteria used. The fact that the SCE algorithm w

dict the underlying relationship with
evidenced by

two networks as

Predictive Performance 
The results of two networks trained by the SCE
algorithm were compared in terms of their overall
connection weights and the RMSE between their
outputs and the target data with added noise. The

Figure 2. Plot of outputs from ANN with correct inputs and optimal structure, as determined by the
backpropagation and SCE algorithms.

able to pre
slightly more accuracy is also
comparing the output plots of the
shown in Figure 2.
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first network has the optimal network stru
determined by the randomisation process 
iterations). This network has 3 inputs a
hidden nodes. The second network i
obtained after 
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only one iteration of t
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Table 3. Results of two different netwo

Overall Connection Weight 
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and  hidden nodes.   
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Input Actual 3 inputs, no hidde
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 inputs, 2 hidd
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n 15 en 

xt-  0.3 0.315 0.871 1

xt-2 - - 0.469 

xt-3 - - -0.319 

xt-4 -0.6 -0.680 -1.344 

xt-5 - - 0.191 

xt-6 - - -0.246 

xt-7 - - -0.244 

xt-8 - - -0.388 

xt-9 -0.5 -0.555 -0.987 

xt-10 - - -0.322 

xt-11 - - 0.318 

xt-12 - - 3.498 

x  - - 3.530 t-13

xt-14 - - -0.210 

xt-15 - - 0.354 

RMSE - 0.544 0.542

The second network has incorrectly estim
underlying relationship, as 12 unnecessary
were included in the model. Particular imp
was given to inputs xt-12 and xt-13 when
they that were not required for the pred
Also, the inclusion of 2 hidden nodes 
that a nonlinear relationship has been e
even though the actual model is linear. Ho
the R

ated the 
 inputs 
ortance 

 in f
ictions. 

indicates 
stimated 

wev
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a plot 
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model the actual AR(9) series as the outputs of 
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another.  

5. CONCLUSIONS 
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