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Abstract: Many studies have used artificial neural networks (ANNs) for the prediction and forecasting of 
hydrological variables, including runoff, precipitation and river level, which are subsequently used for design 
or management purposes.  However, although it is widely recognised that hydrological models are subject to 
parameter uncertainty, ANNs in this field have been almost exclusively deterministic with little attention paid 
to the uncertainty in the network weights.  The inherent variability of hydrological processes means that no 
finite set of observations will give exact parameter values and therefore it is important to express network 
weights as a range of plausible values such that one, possibly incorrect, weight vector does not completely 
dominate the predictions.  In this paper a synthetically generated data set is used as a tool for demonstrating 
the potential advantages of explicitly accounting for parameter uncertainty.  A Markov chain Monte Carlo 
approach is used to sample from the distribution of possible network weights in an attempt to eliminate or 
reduce the potential problems that can be encountered during network training. By expressing the network 
weights as a distribution it is also possible to express the level of confidence with which ANN predictions are 
made.   
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1. INTRODUCTION

Many studies have used artificial neural networks 
(ANNs) for the prediction and forecasting of 
hydrological variables, including runoff, 
precipitation and river level (ASCE, 2000), which 
are subsequently used for design or management 
purposes. It has been shown that, when applied 
correctly, ANNs are able to perform at least as 
well as more conventional modelling approaches. 
However, although it is widely recognised that 
hydrological models are subject to parameter 
uncertainty, ANNs in this field have been almost 
exclusively deterministic with little attention paid 
to the uncertainty in the network weights. 

The connection weights of an ANN are adjustable 
and can be compared to coefficients in statistical 
models. The network is “trained” or calibrated by 
iteratively adjusting the connection weights such 
that a predetermined objective function is 
minimised and the best fit between the model 
predictions and the observed data is obtained. 
However, the task of training a network is not 
always straightforward and may be complicated 
by the existence of local minima in the solution 
surface or the potential of overfitting the training 
data. 

Using standard neural network approaches, the 
aim is to find an “optimal” set of network 
weights. However, no finite set of observations 
can be expected to give exact model parameter 
values, as the inherent variability of the 
hydrological process itself means that each 
different set of data would yield different 
parameter values. Therefore, it is important to 
express network weights as a range of plausible 
values such that one, possibly incorrect, weight 
vector does not completely dominate the 
predictions.  

In this paper Bayesian methods are employed in 
order to demonstrate the potential advantages of 
explicitly accounting for parameter uncertainty. In 
particular, Bayesian methods will be applied to 
determine a robust range of connection weights 
that may then be used to express the degree of 
confidence with which predictions are made. 

2. METHODS

2.1. Determination of Robust Connection 
Weights 

The nonlinear characteristics of ANNs lead to the 
existence of multiple optima on the solution 
surface and, consequently, many combinations of 
network weights may result in similar network 
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performance. There is currently no training
algorithm that can guarantee that the network will
converge on the global optimal solution as 
opposed to a local minimum in the solution
surface.

Local or global optimisation algorithms may be
used to train an ANN. Backpropagation, a first
order local method, is currently the most widely
used algorithm for optimising feedforward ANNs
(Maier and Dandy, 2000). This algorithm is based
on the method of steepest descent, where the
network weights are updated according to:

wn+1 = wn + ndn (1)

where w is the vector of connection weights,  is 
the step size and d is a vector defining the
direction of descent. This algorithm is an effective 
way of optimising weights, however, like all local
search methods, it is susceptible to becoming
trapped in local minima in the error surface.
Global methods have the ability to escape local 
minima, as they employ random search 
techniques to allow the simultaneous search for
an optimum solution in several directions. They
are often more computationally intensive than
local search techniques, but with improving
computer technologies, the use of global
optimisation methods is increasing. Duan et al.
(1992) developed the shuffled complex evolution
(SCE) algorithm that uses multiple “simplexes”,
started from random locations in the search space,
to direct the search towards the global optimum.
At periodic stages of the search, the points in the 
simplexes are shuffled together to ensure that
information is shared and that each simplex is not 
conducting an independent search of the global 
optimum.

It is not sufficient for an ANN to simply fit the
training data, however, as the purpose of ANNs is
to generalise, i.e. to provide good predictions
when presented with new data. When ANNs learn
specific characteristics in the training data set that
are not true in general the network has been 
“overtrained”. Cross validation is a method that
can be used to stop training before this occurs and
ensures that only the general trends in the data are
learnt. A test data set is employed to determine
the optimal stopping time, which is when some
objective function of the test set is a minimum
(ASCE, 2000). However, to do this the available
data must be split into two data sets, thus reducing
the size of the training set and limiting the
information that may be learnt during training,
particularly if the original data set is not large.

Alternatively, the size of the network, and
therefore the number of free parameters, may be 
reduced in an effort to prevent overtraining, as it

has been suggested that overtraining does not
occur if the number of samples in the training
data set is at least 30 times the number of free 
parameters (Maier and Dandy, 2000). However, if
the data set is of a limited size, it may not be
possible to reduce the number of free parameters
to achieve this ratio.

The methods currently employed to improve the
generalisation ability and prediction performance
of an ANN do not guarantee that the global
solution of the network will be found. By
explicitly accounting for parameter uncertainty it
is acknowledged that it is difficult and often
unlikely to find a single optimal weight vector. A
more robust model can be developed if a range of
plausible values is specified for each connection
weight, rather than allowing one weight vector to
completely dominate the predictions.

Bayesian Methods for Quantifying Uncertainty
Bayesian methodology offers an approach for
handling uncertainty explicitly. Under this
paradigm all uncertain quantities are expressed as 
probability distributions which represent the state 
of knowledge of the quantities. In Bayesian
inference, any prior beliefs regarding an uncertain
quantity are updated, based on new information,
to yield a posterior probability of the unknown
quantity.

Using Bayes’ Theorem, the parameters of a model
may be inferred from the data under the
assumption that the model (structure) is “true” as
follows:

MPM,DPMD,P
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MDP

MPM,DP
MD,P
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where w is a vector of model parameters, M is the
model and D are the data. The likelihood,
P(D| w, M), in this case comes from comparing
the actual measurements to the model predictions
and is the function through which the prior
knowledge of w is updated by the data. The prior,
P(w|M), supplies any knowledge regarding the
model parameters such as information gained
from previous measurements or general
information such as their range and whether they
are non-negative.

Stochastic Neural Networks
The application of Bayesian methodology to 
ANN training was pioneered by Neal (1992) and
MacKay (1995). The calibration of a Bayesian or
stochastic ANN involves sampling from the
posterior distribution of network weights,
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P(w | D, M) rather than finding a single “optimal”
set of weights. As a result, a weight vector that
fits the data only slightly better than others will
contribute only slightly more to the prediction
rather than completely dominating it. 

If it is assumed that the noise model, which
describes the residuals between model predictions
and observations, is Gaussian, then the
conditional probability of the observations given
the input and weight vectors and network
structure is as follows:

n
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f wxw,xy  (3)

where  is the scale of noise and n is the number
of observations in the data set. This is the
likelihood of the model parameters.

The Metropolis Algorithm
The high dimensionality of the conditional
probabilities in (2) makes it difficult to calculate
the posterior weight distribution numerically.
Consequently methods have been introduced to
approximate (2). Neal (1992) introduced a
Markov chain Monte Carlo (MCMC)
implementation to sample from the posterior
weight distribution.

A common MCMC approach is to use the 
Metropolis algorithm, which makes use of a 
symmetrical proposal distribution (e.g. Gaussian)
and an adaptive acceptance-rejection criterion to
generate a random walk Markov chain which
adapts to the true posterior distribution of an
unknown variable, e.g. connection weights.
Although the Metropolis algorithm is not the most
efficient MCMC method, it is often employed
because of its simplicity. Details of its
computational implementation can be found in
Thyer et al. (2002).

Given sufficient iterations, the Markov chain
induced by the Metropolis algorithm should
converge to a stationary distribution. From this
point samples from the Metropolis algorithm can
be considered to be samples from the posterior
distribution. However, it is difficult to determine
whether convergence has been achieved and how
many iterations are required for convergence.
Haario et al. (2001) introduced a variation of the
Metropolis algorithm that was developed to
provide improved convergence properties. In this
algorithm the proposal distribution continually
adapts to the posterior distribution by taking into
account all previous states of the weight vector. 
Therefore a Markov chain is no longer produced.
The adaptive Metropolis algorithm requires that
the vector of network weights be first initialised

with arbitrary starting values. Generally the
weights which correspond to the maximum
likelihood would be used for this purpose. The
adaptive Metropolis algorithm was used in this
study.

2.2. Quantifying Uncertainty in Predictions

If samples are taken from the posterior
distribution of the network weights and new data
are input into the network, a distribution of the
network outputs will be produced. It is important
to keep in mind, however, that connection 
weights of ANNs are not unique and can be 
highly correlated if too many hidden nodes are
included in the network. It is therefore necessary
to retain this correlation structure when the
weights are sampled from their respective
distributions.

Once the posterior distribution of the predictions
is produced, confidence intervals may also be 
determined enabling predictions to be made with
a known level of confidence. If the confidence
bounds are tight, there is little uncertainty in the
prediction and vice versa.

3. CASE STUDY

3.1. Data and Model Structure

Autoregressive (AR) models are commonly used
to model hydrological time series data. The
autoregressive model, AR(9), given by (4), was
used to generate a set of synthetic time series data
which were in turn used to demonstrate the
importance of accounting for parameter
uncertainty.

xt = 0.3xt-1 - 0.6xt-4 - 0.5xt-9 + t (4)

In the above equation t is a normally distributed
random noise component with mean of 0 and 
standard deviation of 1. The use of synthetic data
enables the capabilities of the proposed method to 
be investigated without the complication of other
sources of uncertainty. By using this model the
driving inputs and error model were known and as 
much data could be generated as required.

It is generally difficult to determine the
appropriate number of hidden nodes that will 
allow adequate representation of the underlying
function and the inclusion of unnecessary hidden
nodes increases the uncertainty in the network
weights, making the task of finding an optimal
solution more complicated. As the relationship
given by (4) is linear, the optimal network
structure is one that contains no hidden layer
nodes. However, in order to investigate the effects
of parameter uncertainty when unnecessary nodes
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are included, the network used in this study
included one hidden node, as shown in Fi .gure 1

Figure 1. Network structure and parameter
numbers

Figure 1

gure 1

1

2

3

4

5

6

Bias Biasxt-1

xt-4

xt-9

3.2. Determination of Robust Connection
Weights

Two investigations were carried out in order to
determine whether Bayesian methods could be
applied to provide a more robust estimate of the
connection weights than standard ANN 
optimisation procedures.

Local Minima 
To determine the effectiveness of different
training algorithms in finding the correct
underlying relationship in the presence of local
minima the following approaches were used and
the results compared:

(a) Train the ANN with the backpropagation
algorithm.

(b) Train the ANN with the SCE algorithm.

(c) Use the weights obtained from 1 to initialise
the adaptive Metropolis algorithm and obtain
a range of weight values.

A training data set of 300 data points was used to
train approaches a, b and c. A test set of 200 data
points was also used in approaches a and b for
cross-validation.

Overtraining
A data set of 150 data points was used to
investigate the ability of ANNs to find the correct 
underlying relationship given limited data. The 
following approaches were used and the results
compared:

(d) Train the ANN on all 150 data points.

(e) Split the data into a training set of 100 data
points and a test set of 50 data points and
train the ANN, applying cross-validation.

(f) Use the weights obtained from d to initialise
the adaptive Metropolis algorithm and obtain
a range of weight values.

Given that the network in has 6 free
parameters and there were only 150 data points in

the data set (i.e. data points/free parameters < 30),
it was assumed that the ANN would be
overtrained using approach d. In each approach
the SCE algorithm was used to train the network
in an attempt to reduce the effects of becoming
trapped in local minima.

3.3. Quantification of Prediction Uncertainty 

Samples from the posterior distribution of each 
connection weight were given as the output from
the adaptive Metropolis algorithm. 10,000 of
these weight vectors were randomly sampled and
the ANN was run for each weight vector selected.
This resulted in a distribution of output values
from which 95% confidence intervals were 
calculated.

To investigate the effect of retaining the
correlation structure of the weight vectors, 
random samples were generated from each weight
distribution, ignoring the correlation between
weights. This was done by calculating the mean
and standard deviation of each weight distribution
and then generating samples from a normal
distribution. The assumption that the weight
distributions were Gaussian is a simplification,
however, it was sufficient for the purposes of
assessing the effects of ignoring the correlation 
structure. 95% confidence intervals were again 
calculated and compared to those determined
when the correlation structure was retained.

4. RESULTS & DISCUSSION

The parameter numbers in the following results
correspond to those displayed in Fi . Results
are also given for a seventh parameter, which is
the standard deviation of the model residuals (  in 
(3)). Results will be presented in terms of the
overall connection weights of network inputs, as
it is considered that this measure provides a better
indication of how well the underlying relationship
has been estimated than an error measure such as
the RMSE. Details regarding this measure can be
found in Kingston et al. (2003).

4.1. Determination of Robust Connection
Weights

The results of the investigations described in
Section 3.2 are given in . The values in the
shaded cells were calculated using the modes of
the weight distributions determined by the
adaptive Metropolis algorithm. The mode of the
distribution is considered to give a good
indication of the average weight value, as it is this
value that would be used to make predictions with
the greatest frequency. The error measure given in

Table 1
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Table 1

Table 1. Results of trained networks

Table 1

Table 1

was calculated by: 

3

23
1i ii AC

 (5)

where Ci is the overall connection weight of input
i and Ai is the actual weight for input i.

Approach used to Estimate Weights

Input Actual a b c d e f

xt-1 0.3 0.31 0.33 0.29 0.40 0.40 0.36

xt-4 -0.6 -0.75 -0.68 -0.66 -0.77 -0.76 -0.65

xt-9 -0.5 -0.62 -0.57 -0.54 -0.61 -0.58 -0.52

Error - 0.112 0.065 0.040 0.128 0.122 0.046

 shows that when the adaptive Metropolis
algorithm was used to obtain a distribution of 
values for each parameter (c), the network was
able to improve upon not only the results of the
network trained by backpropagation (a), but also
the results of the network trained by the SCE 
algorithm (b), in terms of determining the correct
weightings of the model inputs.

It is also shown in that, by obtaining a 
distribution of values for each parameter, the
network was able to find a robust estimate of the
weight vector given limited data (f). This
approach was therefore able to overcome the 
effects of overtraining while still using all of the
information contained in the data set. The results
of the network that used cross-validation to
prevent overtraining (e) showed little
improvement over the overtrained network (d).
This is most likely due to the loss of information
resulting from the reduced size of the training set.

Approaches b and e are essentially the same,
except that approach b was trained on twice the 
amount of data that approach e was trained on.
The improvement in the results of b compared to 
e is significant. On the other hand, by comparing
the results of approaches c and f it can be seen 
that only a minor improvement in the results was 
achieved by using twice the amount of data when
Bayesian methods were employed. It is expected
that with increasing data the results obtained
using Bayesian methods would continue to
improve, however, it has been shown that in order
to produce reasonable results a large data set is
not necessary.

Overall, the network trained on 300 data points
and employing Bayesian methods (c) performed
the best. However, the network trained on 150
data points, also employing Bayesian methods (f)

performed better than both of the networks
trained with 300 data points using standard neural
network methods (a and b).

4.2. Quantification of Prediction Uncertainty 

The Metropolis output for parameter 1 is plotted
against the output for parameter 2 in Fi . For
comparison, the Metropolis output for a network
with no hidden nodes (optimal structure) has also
been included in the figure. It can be seen that the 
parameter ranges for the network with 1 hidden
node are significantly wider than the ranges when
there are no hidden nodes, indicating a higher
degree of uncertainty. Additionally, the
parameters display a high degree of correlation
when a hidden node is included in the network.

gure 2

Figure 2. Metropolis output of parameters 1 & 2
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A plot of output from approach c (detailed in
Section 3.2) is displayed in F . 95%
confidence intervals are included in the figure for 
the cases when the correlation structure between
network weights was retained and when it was 
not.

igure 3

An inspection of the covariance matrix of the
parameters showed that parameters 1, 2, 3 and 5
were highly correlated with covariance values
greater than 0.85. Given the reasonably wide
ranges of the parameters (e.g. ), the 
tightness of the 95% confidence intervals
obtained by retaining the correlation structure in
the weights indicates that, although the values for 
the weights are not unique, as long as the 
correlation structure between the weights is 
preserved, predictions may be made with
confidence. This was confirmed by inspecting the
95% confidence intervals obtained when the 
correlation structure was ignored. These bounds
are much wider, indicating that there is much
greater uncertainty in the predictions.

5. CONCLUSIONS

This study has demonstrated that the explicit
assessment of parameter uncertainty can be
extremely beneficial in generating accurate
predictions from ANNs. The investigations
carried out enabled the following conclusions
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Figure 3. Plot of outputs from ANN with 95% confidence intervals.

to be made:

The incorporation of Bayesian approaches
provide ANNs with the ability to find robust
weight estimates in the presence of local
minima.

The incorporation of Bayesian approaches
provide ANNs with the ability to find robust
weight estimates given limited data and
these ANNs are capable of performing better 
than networks trained on larger data sets
using standard approaches.

The results obtained using ANNs that
incorporate Bayesian methods improve with
increased data, however comparable results
may be obtained with a significantly smaller
data set and therefore a large data set is not
essential for the success of this approach.

It has also been shown that, although the
connection weights of an ANN are not unique,
confident predictions may be made with ANNs as 
long as the correlation structure between the 
weights is considered. Future investigations will
include examining the correlations between
weights to help determine the optimal network
structure.
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