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Abstract: Human ability to adapt to climate variability may help alleviate the effects of predicted longer- 
term climate variability on our social, ecological and economic systems. It is not possible to model human 
adaptation to climate variability without considering a bewildering array of variables. The stochastic, 
reflexive, threshold-sensitive, time-dependent and system-wide nature of the variables usually associated 
with human coping and learning responses to climate variability implies the existence of a resilient-centred, 
complex system. The reflexive character of a resilient system especially complicates modelling approaches 
based on traditional deterministic and stochastic modelling paradigms. We are interested in the use of 
participatory game simulation models that overcome the probabilistic element of human decision-making by 
including it as a key variable. Our approach is based on a 2 stage-modelling project that combines the 
benefits of a whole-system approach with participatory modelling. In this paper we explore the role of an 
influence matrix in scoping, reducing and formulating the structure of a future game simulation model. Our 
stakeholders are farm managers from New Zealand East Coast, North Island rural communities that are 
currently participating in a government funded sustainable management farm study group. 
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1. INTRODUCTION 
 
Climate variability is an important driver in 
complex social-economic-systems (Munasinghe 
2001; Peterson et al. 1997). This paper 
contributes to a long-term study that aims to build 
better understanding about the nature of human 
responses to climate variability in rural New 
Zealand. We are especially interested in the future 
development of participatory dynamic gaming 
models that can be used to simulate whole-farm-
system and farm management responses to 
climate variability. Recent research indicates 
climate is perceived to be the foremost driver of 
farm-systems (Cole 2003). Yet climate does not 
act independently of other compounding factors 
(e.g. interest and exchange rates, market prices 
and environmental factors are strong influences 
on farming systems) (Peterson et al. 1997). This 
complexity makes the study of human response to 
the effects of climate variability a challenging 
area of research for a number of reasons. 
 
From an ecosystem perspective (Rykiel 1985), the 
first challenge in this area of research is to define 
what we mean by a climate disturbance event 
(Gerritsen et al. 1985). Not all disturbances are 
bad (Sousa 1979) in their system-wide, temporal 

and spatial effects (DeAngelis et al. 1985; Pickett 
et al. 1989). This implies that “whole-system” 
modelling is needed to define and evaluate 
climate-mediated disturbance events in the whole-
farm management context.  However, such a 
modelling exercise requires overcoming the 
commensuration problems typically associated 
with system-wide benefit-cost analysis, and the 
difficulties of adequately depicting the dynamic, 
stochastic, time-dependent and threshold-sensitive 
nature of the variables we here call ‘compounding 
factors’.  
 
Beyond the problem of modelling system-wide 
effects and defining the thresholds of climate-
mediated disturbance events etc., we seek to 
understand how and why humans respond to these 
events. The challenge here is that humans can 
respond to forecasts of climate variability in ways 
that change the system and therefore the validity 
of the prediction. Reflexive behaviour of this kind 
we usually associate with long-term climate 
variability (Walker et al. 2002). However, our 
point is that human response to both long- and 
short-term climate-change can alter the nature of 
a climate-mediated disturbance event. In 
summary, climate-mediated disturbance events in 
human-managed primary production systems are 
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extremely complex in their structure, internal 
dynamics and behaviour. The management of 
such a complex system is clearly resilient-centred 
(Walker et al. 2002).  
 
There are several modelling paradigms that could 
be used to portray complex systems of this kind, 
and most are capable of blending deterministic 
and stochastic influences. However, the problem 
of how to include human decision-making as a 
system variable is the greatest challenge. 
Individual human responses are themselves 
perception and learning mediated and can be 
modified by crisis-initiated innovation and 
intuition. 
 
Gaming simulation models (Costanza et al. 1993; 
Sterman 1989) help to overcome the probabilistic 
nature of human decision-making by including it 
in each time step of the model. By doing this, the 
modeller is better able to assess the degree to 
which human perception, learning, intuition and 
innovation are elements of decision-making. 
Furthermore, in such a modelling environment the 
system-wide costs and benefits associated with 
management responses – intuitive, calculated, 
learned or otherwise – can be assessed. Feedback 
of this kind has the potential to provide insights 
that may be important in guiding farm 
management responses to climate-mediated 
disturbance events. This paper examines a method 
suitable for formulating such models. 
 
The construction of farm management game 
simulation models is a serious challenge if we are 
to build functionality and realism into such 
models so that farm managers can identify with 
them. We have used an influence matrix (Vestor 
1976) for involving stakeholders directly in the 
whole-system model-building process (Cole 
2003). Participatory modelling is a good solution, 
but it can require a significant time commitment 
that stakeholders are not always in a position to 
make. Another problem we have found is that 
some stakeholders are not able to be actively 
involved in participatory modelling processes for 
other reasons including: accessibility and poor 
education. In the development of our participatory 
modelling research with an influence matrix (Cole 
2003) we need strategies for dealing with these 
sorts of situations.  
 
In this project we begin to test an alternative to 
the direct involvement of stakeholders in the 
model-building process. Our stakeholders (2 
study groups of farm managers) have provided a 
wealth of information through dialogue-based 
workshops. One group has accessibility and time 
constraint problems. As an alternative, our 
research team members offered to build an 

influence matrix using the information the 
stakeholders provided. We were especially 
interested to see if it was possible for the 4 
independent members of the research team to 
build influence matrices that produced consistent 
results from the information we were given by the 
2 stakeholder groups. The challenge here is to 
score the matrix as a stakeholder and not a 
researcher.  
 
As a separate research project, the 9 members of 
our second stakeholder group offered to build 
their own influence matrices that could be used 
with multivariate statistics to test the significance 
of results produced by this dialogue-based, 
‘proxy’ modelling approach. The results of this 
study will be published separately. 
 
1.1 What is an Influence Matrix? 
 
The influence matrix was first developed in 1975 
by a group of German scientists under the 
leadership of Frederic Vestor in the context of a 
UNESCO programme1. The pilot study was 
published by (Vestor 1976). Our interest in the 
influence matrix stems from its potential to be 
used as a whole-system modelling tool. Our aim 
is to reduce a highly complex farm-system model, 
as described by farm managers, down to its 
essential functional parts. We accomplish this 
initially by aggregating common factors together, 
and then by building an influence matrix. 
 

 
Figure 1: A factor typology 

An influence matrix uses qualitative data2 to help 
select, rank and understand the functional role of 
key system factors. It can be built in participation 
with stakeholders, a point that adds the benefit of 
model ownership on their part.  The main output 
of an influence matrix is a typological 
classification of all system factors (Figure 1). We 

                                                           
1 UNESCO research programme: (Man and the 
Environment). 
2 The survey component of this research was 
conducted by members of our research team with 
a background in social learning and psycology.  



2. METHODOLOGY intend to use the factor typology as a stepping-
stone to formulate a game simulation model of a 
farm-system in Vensim – an object-oriented, 
system dynamics modelling software package.  

 
The process involved in building an influence 
matrix has 5–6 clearly defined steps that can be 
varied to suit the specific needs of different 
modelling projects.   

 
The typology classifies system factors according 
to their functional role in the system. For 
example, a critical element has a strong influence 
on other system factors and is strongly influenced 
by other system factors (Figure 1). Critical factors 
are typically system processes that need to be 
managed with care because of the system-wide 
consequences associated with mismanagement 
(Vestor 1976). Yet the critical factors are not the 
most important in terms of developing adaptive 
capacity. Here we are especially interested in the 
identification of passive and buffer factors. 
Passive factors perform an important feedback-
damping function. Buffer factors provide the 
capacity in the system that is needed to slow 
down and ease the approach of the system toward 
thresholds or limiting values. 

 
 1. Factor selection 
 2. Factor aggregation 
 3. Form an influence matrix table 
 4. Fill in the table using influence scores 
 
The four-team members working on this project 
scored their own influence matrix based on the 
knowledge we had gained over a period of three 
2-day workshops with stakeholders. One of our 
social researchers also conducted a series of one-
to-one interviews with farm managers. The team 
members discussed the information they had 
gathered, and insights were recorded in the form 
of tables and notes shared between team 
members. We compared the 4 influence matrices 
for consistency of results, resolved differences 
and then asked our participating farmers to check 
a composite model (Table 2 shown after 
references) to identify scores they felt were 
unexpected. 

 
The typology is based on information derived 
from the influence matrix, which quantifies the 
relative strength of system-wide influence for 
each system factor. System-wide influence is 
measured qualitatively with a scoring strategy of 
0–5 where a score of 0 stands for no influence, 5 
stands for a strong influence, 3 is an average 
influence, while 2 and 4 stand for lower and 
higher scores either side of average. The matrix is 
evaluated with elementary row and column 
mathematics that can be completed by 
participating stakeholders if needed. 

The numerical evaluation of the influence matrix 
( ) is accomplished with elementary row and 
column mathematics undertaken using a 
Microsoft Excel spreadsheet program. First, we 
sum the rows (i) and columns (j) of the influence 
matrix to calculate the active (1) and passive sums 
(2). The active and passive sum scores can be 
used to rank the list of factors to provide insight 
into those highly scored factors that have the 
greatest influence on the system. 

ijM

 
In summary, we use an influence matrix for a 
number of reasons. First, it helps us to evaluate 
the role and relative importance of system factors. 
Second, it provides a systematic framework for 
managing complexity in a way accessible for 
stakeholder participation. Third, it uses the 
qualitative measurement of system-wide influence 
as a unit of account. This bypasses the theoretical 
and computational problems typically associated 
with the measurement of economic, social, 
ecological and cultural factors in different units.  
Finally, each of the critical, active, passive and 
buffer factors of the influence matrix typology 
has a direct analogue in system dynamics stocks 
and flows modelling (Table 1). Furthermore, they 
provide an important starting point for exploring 
adaptive functionality in the system. 
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The factor typology is developed using three lines 
of numerical information. First, we calculate the 
absolute numerical difference (AND) between the 
AS and PS scores. 
 
Absolute Numerical  
Difference (AND) =    (3) PSAS − 

Table 1 A comparison of model terms  
As the AND score approaches zero, the functional 
character of a factor tends towards being critical / 
buffer (ref. Figure 1). By contrast, an AND score 
that tends towards higher values indicates the 
functional character of a factor tends towards 

Influence Matrix System Dynamics 
Critical Processes 
Active Drivers 
Passive Stocks 
Buffer Flows 



Table 3 The classification of factors using the 
AND, QS and MS scores. 

being passive or active. We use the AND score to 
help decide the character of factors that have 
borderline quotient and multiplier scores. Factor QS MS AND Type 

Event Characteristics 1.92 1200 26 Active 
External Drivers 1.23 1178 11 Active 
Net Farm Income 1.15 4270 10 Critical
Farm Management 1.05 3538 3 Critical
National Effects 1.21 1320 6 Buffer 
Regional Effects 1.04 2115 2 Buffer 
Resilient Design 1.00 3969 0 Buffer 
Results of Flooding 1.00 2304 3 Buffer 
Adaptations 0.96 2915 2 Buffer 
Results of Drought  0.95 2860 3 Buffer 
Ecol./Environmental 0.91 2964 5 Buffer 
Coping Mechanisms 0.76 2655 14 Buffer 
Farm Merchandisers 0.76 1813 12 Buffer 
Institutions 0.69 1395 14 Passive
Local Effects 0.46 1056 26 Passive

 
The quotient score is used to identify the 
existence of active and passive factors. It is 
calculated by dividing the AS by the PS (4). We 
use the quotient score to rank our list of factors. 
High quotient scores indicate active functional 
character (a strong influence on other factors). A 
low quotient score indicates passive functional 
character (the factor is strongly influenced by 
other factors compared with the strength of its 
influence on other factors). Factors with 
intermediate quotient scores will tend to be more 
critical and buffering in functional character. We 
use the AND score to decide borderline cases. 
 
Quotient Score (QS) =   (4) PSAS /
 
The multiplier score is used to identify the 
existence of critical and buffer factors. It is 
calculated by multiplying the AS by the PS (5). 
We use the multiplier score to rank our list of 
factors. High multiplier scores indicate critical 
functional character (a strong influence on other 
factors and strongly influenced by other factors). 
Low multiplier scores indicate buffering 
functional character (the factor is weakly 
influenced by other factors and has a weak 
influence on other factors). Factors with 
intermediate multiplier scores will tend to be 
more passive and active in functional character. 
We use the AND score to decide borderline cases. 

 
Another useful way of evaluating the results of 
the influence matrix is to rank the AS and PS 
scores. We have ranked the AS scores and 
recorded these in Table 4. The active sum is 
calculated as the sum of the row influence scores 
for each factor. The AS tells us the relative 
influence a factor has on all other factors in the 
system. It should perhaps come as no surprise that 
our study showed that the Net Farm Income 
Factor provides the strongest influence on all 
other farm system factors. Close behind this 
factor is System Resilience and Farm 
Management. Human coping responses to drought 
and flood impacts have only an intermediate to 
low AS ranking compared with Adaptations, 
which scores next with the top 3 most highly 
scored AS factors.  

 
Multiplier Score (MS) =  (5) PSAS ×
 
For comparative purposes, we formed tables of 
each team member’s scores that could be used to 
cross-check the consistency of our results. The 
final factor typology, which emerged as the 
product of this cross-checking, was then used to 
formulate a conceptual model of our farm system, 
which in turn will form the basis of a future 
dynamic game simulation model. 

 
 Table 4 Ranking of the active sum 

Factors Ranked by Active Sum AS 
Net Farm Income 70 
Resilient Design 63 
Farm Management 61 
Adaptations 53 
Results of Drought  52 
Ecol./Environmental 52 
Results of Flooding 48 
Event Characteristics 48 
Regional Effects 47 
Coping Mechanisms 45 
National Effects 40 
External Drivers 38 
Farm Merchandisers 37 
Institutions 31 
Local Effects 22 

 
3. RESULTS 
 
An influence matrix produced by Team Member 
1 with its AS and PS scores is shown in (Table 2 
shown after references). We use the AS and PS 
scores from the influence matrix to calculate the 
AND, QS and MS scores as listed in Table 3. 
Table 3 contains a list of the 15 aggregated 
factors, ranked according to their quotient scores 
(QS). Note the numerical pattern that this causes 
in the absolute numerical difference scores 
(AND) in column 4 of Table 3.   

Finally, Table 5 provides a comparison of the 
typologies produced from the influence matrices 

 



of our different team members. We used this 
Table as the basis of checking for consistency 
between our results.  
 
Table 5 A comparison of team member results 

Factors TM1 TM2 TM3 TM4
Adaptations B B B B 
Coping Mechanisms B B  B B 
Results of Drought B B  B B 
Ecol./Environmental B A  B A 
Farm Management C C  C C 
Net Farm Profit C C  C C 
Results of Flooding B B  B B 
Event Characteristics A A  C A 
External Drivers A A  P B 
Farm Merchandisers B P  B P 
Institutions P P  A P 
Local Effects P P  P P 
National Effects B P  B B 
Regional Effects B B  A C 
Resilient Design B B  B C 
Consensus (%) NA 80 74 66 

 
4. DISCUSSION 
 
An influence matrix represents a snapshot of the 
current understanding of those who produce the 
scores. Our research team members (a 
mathematician (TM2), ecological economist 
(TM1), psychologist (TM4) and farm advisor 
(TM3)) scored individual matrices by drawing on 
information obtained directly from our farm study 
groups. The scoring of an influence table is based 
on consensus in a group situation. It is possible to 
dialogue over different scores while scoring the 
Matrix (a participatory approach) or by 
comparing results as we have done. Table 5 
contains the evaluation results of the 4 influence 
matrices built by our research team members 
(TM1-4). Here we show that it is possible to get a 
high level of consensus between team members 
using this approach (see row 16 of Table 5). We 
have chosen TM1s Matrix (Table 2 shown after 
references) as a reference point for assessing 
consensus of results (Row 16).  
 
According to the results of Table 2, the 2 critical 
factors in climate-mediated farm systems are Net 
Farm Income and Farm Management. Both 
factors are highly sensitive to system-wide 
feedback on the one hand and are able to exert 
strong influence on most other system factors. By 
contrast, the drivers of our model system are 
Climate Event Characteristics, and External 
Drivers. The aggregated factor, External Drivers, 
includes factors such as: the value of the New 

Zealand dollar, interest rates, tax payments, debt 
servicing, and public perception.  
 
The compensatory mechanisms that help maintain 
a farm system in its configuration includes: 
Human Adaptation along with Resilient Design 
and Coping Responses. These 3 factors all operate 
through the two critical factors of Farm 
Management and Net Farm Income. They could 
be considered as styles of farm management. Our 
results differentiate between management style as 
buffering capacity and physical structures, on-
farm, locally, regionally and nationally, which are 
capable of absorbing the effects of disturbance 
events.  
 
On-farm, the stress of climate variability is 
absorbed by structural damage to the environment 
and major impacts on pasture production and 
stock yields. Locally, farm merchandisers are 
capable of absorbing disturbance events to a 
certain degree, beyond which regional and 
national effects are evident. As mentioned earlier, 
buffer factors are part of farm system resilience. 
Our analysis indicates there is a strong spatial 
buffering zone around farms that is needed to help 
absorb the shock of climate-mediated disturbance 
events. In contrast to the strong spatial dimension 
of the farm system’s buffering capacity, 
feedback-damping functions are performed 
largely by local institutions (police and rescue, 
lawyers, accountants, schools, community groups, 
etc.). In stocks and flows modelling, passive 
factors are portrayed as stocks or indicator 
variables.  In the context of a farm system, this 
suggests that the well-being of a local rural 
community can be included in a index of on-farm 
resilience. 
 
In conclusion, our study has focused on 2 issues. 
Firstly, we aimed to build a consensus model of a 
whole-farm system that could be used as a basis 
for developing a dynamic simulation model. A 
second challenge was to accomplish this 
modelling aim without the direct involvement of 
our stakeholders in the model-building process. 
By getting our 4 research team members to build 
the influence matrix in proxy we have maintained 
a safeguard against individual ‘modeller-bias’, 
while demonstrating that the method is capable of 
producing consistent results between team 
members when used in this manner. Further 
statistical research is now needed to assess the 
significance of these results when compared with 
outcomes produced by direct stakeholder 
involvement in the model-building process. This 
paper also shows the value of an influence matrix 
in understanding the functional character of key 
factors in a complex system. While we are 
currently involved in further testing, the results 
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shown in Table 5 could now be used in the 
formulation of a game simulation model.  
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(A

S)
 

A d a p ta tio n s  3  4  5  5  1  5  5  1  1  5  3  5  3  4  5  5 5  

C o p in g  M ech a n ism s 5  3  5  5  3  5  3  0  1  1  3  4  2  3  4  4 7  

D ro u g h t I m p a cts  4  4  0  5  4  5  5  2  3  5  4  4  2  3  4  5 4  

E co l./E n v iro n m e n ta l 3  4  5  5  5  4  5  3  2  3  4  4  1  2  4  5 4  

F ar m  M an ag e m e n t 5  5  4  5  4  5  4  4  1  5  3  3  4  4  5  6 1  

E co n o m ic  5  5  5  5  5  4  4  3  5  5  5  5  5  5  5  7 1  

E ffects o f F lo o d in g  3  5  5  4  5  4  1  3  2  4  3  3  1  3  5  5 1  

E ve n t 
C h a ra cter ist ics  

2  4  4  4  5  5  4  1  3  3  3  3  2  3  5  5 1  

E x tern a l D r iv ers  4  5  5  1  5  4  1  0  1  4  2  3  1  2  4  4 2  

F ar m  
M erch a n d isers  

3  5  4  4  5  4  3  2  0  1  1  1  1  2  4  4 0  

In stitu tio n s  3  3  1  2  4  1  1  0  0  1  4  4  2  3  4  3 3  

L oca l E ffec ts  2  1  1  0  2  3  0  0  1  2  2  1  2  3  4  2 4  

N a tio n a l E ffec ts  4  2  2  3  3  4  3  1  4  3  2  2  1  3  2  3 9  

R eg io n a l E ffec ts  4  4  4  4  5  3  4  1  3  3  3  2  3  1  3  4 7  

S y ste m  R e silie n c e  5  5  5  5  2  5  5  4  4  4  3  4  3  4  5  6 3  

P ass ive  S u m s (P S ) 5 5  5 9  5 5  5 7  5 8  6 1  4 8  2 5  3 1  4 9  4 5  4 8  3 3  4 5  6 3   

 

Table 2: Example of a filled influence matrix 
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