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Abstract: This paper describes the use of a long-range dependence time series model to determine ozone and 
nitrogen oxides (NO2 and NOx ) trends at a number of monitoring sites in Sydney. The technique removed 
seasonally, auto-regressive and moving average dependence from the time series. The trend was then 
modelled using the fractional long-term dependent component and can be determined or detected at a very 
small resolution of concentration level. Other recent techniques of finding long term trend by removing the 
effect of meteorology are also described. These techniques, such as the Rao-Zurbenco method, were shown 
to be equivalent to the long-range dependence method in term of the result of the trend analysis. 
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1. INTRODUCTION 

Ozone is a photochemical pollutant generated in 
the troposphere in the presence of sunlight from 
the photochemical reactions between ozone 
precursors nitrogen oxides (NOx) and volatile 
organic compounds (VOCs). Trend in ozone 
levels can be determined by performing various 
analyses on ozone data collected over many years 
at different monitoring sites. This can provide an 
insight as to whether the implemented control 
strategies have been effective in reducing ozone 
levels or if adjustments are required. 

To detect changes in ozone precursor emissions, 
the meteorological effect should be removed from 
the ozone data. There are a number of methods, 
which were published recently, to find the trend 
of ozone by removing the meteorological effects. 
These methods (Rao and Zurbenco  [1994]; 
Flaum , Rao and Zurbenco [1996]; Xu ,Yap  and 
Taylor [1996]) mainly use different models 
containing various meteorological variables, 
which will be then removed to isolate the long-
term trend component from the other components 
in the models of the time series.  

Other recent advanced methods to filter out the 
different frequency scales to determine the long-
term trend have been used on air quality, water 
and climate data with some success, such as the 
Kolmogorov-Zurbenco filtering approach (Rao, 
Zurbenco et al [1997]) and the wavelet transform 
(Whitcher [2000], Lau, Weng [1995]). 

One particular useful method that can be applied 
to many different air pollutant time series is the 

Long Range Dependence (LRD) method. This 
method identifies the LRD component in the 
fractional ARMA model as the anthropogenic 
trend (Anh, et al. [1997]). 

In this paper, the LRD model is applied to various 
air pollutant time series in the Sydney area to find 
the long-term anthropogenic trends. The emission 
from the motor vehicles in the Sydney basin plays 
an important role in interpreting the significance 
and implication of these trends.  

2. EFFECTS OF METOROLOGY ON AIR 
QUALITY 

As ozone level is highly dependent on 
temperature, it is important to look at the various 
mechanisms that can effect the regional 
temperature. Besides the diurnal, synoptic and 
seasonal time scales, there is another longer time 
scale: the global scale driven by the El-Nino 
Southern Oscillation (ENSO). This phenomenon 
is mostly strongest in the Southern part of the 
Pacific Ocean. Its effect is causing a spell of 
drought with high temperature in Eastern 
Australia and high rainfall, cooler climate in the 
West Coast of North America. As illustrated in 
Figure (1) the monthly average of the Southern 
Oscillation Index (SOI) from 1970 to 2000. High 
negative SOI values indicate the El-Nino effect 
while positive ones, the La-Nina phenomenon. 
The 4 recent El-Nino phenomena are the 1982-
1983, 1987-1988, 1991-1994 and 1997-1998 
periods with the 1982-1983 period as the 
strongest. For Sydney, there is a high degree of 
correlation between the number of days above 



3. MODELLING ANTHROPOGENIC 
TRENDS USING RAO-ZURBENCO 
METHOD 

goals with the SOI values in the 4 recent El-Nino 
periods (Figure 2).  

 
Rao and Zurbenco [1994] used the ozone and 
temperature time series to find the 
meteorologically adjusted ozone trend by using 
filtering and regression techniques. A time series 
( )X t  is assumed to be represented as 

Figure1-Monthly average of Southern Oscillation 

Index (SOI) from 1970 to 2000 
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 ( ) ( ) ( ) (X t e t S t W t)= + +     (3.1) 

Where ( )e t  is the trend component, ( )S t  the 

seasonal component and W t  white noise. The 

random variations 

( )
( )W t  can be removed from 

the series by a simple iterative application of a 
moving average filter:  

( ) ( )Y i
m

X i j m k
j k

k

= + =
=−
∑1 2, ,+1  (3.2) 

where ( )iY , the output of the first iteration, then 
becomes the input for the next iteration of (3.2). 
The number of iterations (p) and the filter width 
value m are to be determined from the data to 
achieve noise-free series. This p-iterative 
application of a moving average filter of width m 
is called the Kolmogorov-Zurbenko filter, 
KZ(m,p). 
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 The effect of meteorological variability on the air 
pollutant time series has to be removed prior to 
any trend analysis. In the Rao-Zurbenko method 
for daily ozone series, the meteorological effects 
are represented by the maximum daily 
temperature. Both the ozone and the temperature 
time series are first filtered to remove the noise 
using the Kolmogorov-Zurbenco filter, KZ(m,p). 
The meteorological effects can then be removed 
by using the regression technique.  

To be specific, denote the filtered log of ozone 
concentrations by O  and the filtered 

temperature by 

( )tk z

( )tT . Then the meteorological 
effects, represented by the seasonal component, 
are removed from filtered log of ozone by the 
linear regression: 

k z

Figure 2–Number of days above ozone goal 
(10pphm) in Sydney 

It is evident that removing the temperature effect 
in the ozone level will reduce significantly the 
meteorological influence due to natural processes. 
The remaining effect is then mainly due to 
anthropogenic sources.  The removal of 
temperature effect was modelled and applied to 
ozone data by various authors using different 
techniques such as Rao, Zurbenco [1994], Anh, 
Duc, Azzi [1997], Milanchus, Rao, Zurbenco  
[1998], Flaum, Rao, Zurbenco [1996], Xu, Zap, 
Taylor [1996]. 

( ) ( )O t a b T t tk z k z ( )= + + ε  (3.3) 

The noise term ( )ε t  then represents changes in 
ozone attributable to changes in emissions. 

The Rao-Zurbenco method can be applied to any 
pollutant, which exhibits temperature or seasonal 
dependence. However, another method called the 
Long Range Dependence (LRD) model as 



described in the next section can be applied to any 
long term time series. ( ) ( ]ππω
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 4. MODELLING THE LRD COMPONENT 

The recent literature on air pollution modelling 
has paid attention to the long-range dependence in 
air quality data. It has now been established that 
the LRD phenomenon is present in air quality, 
meteorological, hydrological and geophysical 
data (Beran [1992], Ooms and Franses [2001], 
Haslett and Raftery [1989]). 

The Sydney pollutant series appear to have 
additive seasonally, suggesting a model of the 
form 

( ) ( ) ( )X t S t R t= +  

Where ( )S t  is the seasonal component and ( )R t  
is the random component. Also due to large 
variations in the seasonal component, particular in 
the summer period, it is necessary to use a Box-
Cox transform 

A stochastic process ( )X t  is said to exhibit LRD 
if its spectral density has the form 

( ) ( )f fω ω ω β ωβ= >∗
−2 0, , ∈ℜ  (4.1) 

( ) ( )Y t
X t

=
−

>
α

α
α

1
0,    (4.3) where ( )f∗ ω  is slowly varying as ω → 0 . The 

spectral density has an integrable singularity at 
the origin if 0 1

2< <β  with the characteristic 

effect that the autocovariance function of ( )X t  
decays to zero at a very slow rate so that the 
autocorrelation function is not absolutely 
summable.  

to stabilise the variance. A special form of the 
Box-Cox transform is the logarithmic transform 
as 0→α . 

The average of the Box-Cox transform of the 
daily maxima over all years for each day of the 
year is then regressed on a set of annual 
harmonics. Substraction of the estimated seasonal 
effect from the Box-Cox transform of the daily 
maxima then yields the seasonally adjusted series 
ready for trend analysis. Thus, the series is 
seasonally adjusted using the yearly profile of the 
transformed series. For ozone and nitrogen oxides 
data series in Sydney, the choice of α = 0 2.  
based on (4.3) has been proved as appropriate 
(Anh, Duc, Azzi [1997]).  

The significant component at a very low 
frequency shows that the time series contains a 
slow varying trend, which is not easily detected 
and removed using standard time series analysis 
such as autoregressive and moving average 
(ARMA) or autoregressive integrated moving 
average (ARIMA). In fact, the presence of LRD 
invalidates many of the traditional methods of 
data description using autoregressive and moving 
average (ARMA) models (Beran [1992]).  

A discrete stationary approximation of the LRD 
factor of  (4.1) is ω β−2

( ) ( ]f
e

d
i dω σ

π
σ ω

ω
=

−
> < < ∈ −

2

2
2 1

22
1

1
0 0, , , π π,

(see Anh and Lunney [1995]).  

The Haslett-Raftery algorithm (Haslett and 
Raftery [1989]) can be invoked to estimate d and 
the ARMA coefficients of (4.2) simultaneously on 
the seasonally adjusted series. Removing the 
short-memory ARMA component from the 
estimated model (4.2) will then give the LRD 
component for trend analysis. The Haslett-Raftery 
algorithm and the associated computing program 
are readily available for use since its publication. Therefore the LRD and short-memory 

components of a discrete time series  can be 
modelled by a fractional ARMA (p,d,q): 

( )X t It has been proved that the trend as derived by 
using the Rao-Zurbenco method is the same as the 
LRD component of the series (Anh, Duc, Azzi 
[1997]) using the LRD method above for both the 
ozone and  series at a monitoring site in 
Sydney. The LRD component of the pollutant 
time series, corresponding to the low frequency 
component of the time series, gives the same 
result as the trend obtained by removing the effect 
of meteorology (with temperature as the 
dominating variable). 

NO2

( ) ( ) ( )
( ) ( )tBB

tXBBB
q

q

p
p

d

εφφ

θθ

+++

=−−−−

...1

...11

1

1 (4.2), 

Where B is the backshift operator 
, d is the LRD parameter, ( ) ( )BX t X t= −1

( )ε t  is white noise with variance . σ 2

The spectral density of the time series generated 
by model (4.2) is 



Another method of analysing the LRD time series 
is using the wavelet transform. Whitcher [2000] 
uses the Discrete Wavelet Packet Transform 
(DWPT) on the monthly CO2 data series to 
estimate the parameters of a fractional seasonal 
long memory model called the seasonal persistent 
process (SPP) of the form 

tt
d XBB εφ =+− )21( 2               (4.4) 

where )2cos( Gfπφ =  and { }tε is Gaussian 

white noise with variance . The spectral 
density of time series X

2
εσ

t is given as 

( ){ } d
ffS

−
−= 22 )2cos(4)( φπσ ε ,  for
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The spectral density has singularity at 
2/1<Gf . The process {Xt} is stationary and 

invertible for 1=φ  and  or  4/14/1 <<− d

1<φ  and  −  2/12/1 << d

The SPP process includes the seasonal effect into 
the model rather than removing it before analysis. 
It is similar to the seasonally adjusted fractional 
ARIMA process described above. When φ=1, the 
SPP process is equivalent to the fractional AR 
process. 

4.1. APPLICATION OF LRD 
MODELLING TO OZONE AND NOx TIME 
SERIES 

As discussed above, due to variability of both 
meteorological variables and pollutant data, the 
regression method is of limited use in finding the 
linear trend due to anthropogenic emission. Time 
series of monitoring data for Ozone and NOx 
collected at a number of stations were used to 
study their trends using the LRD method. In 1998, 
the Sydney basin has 19 monitoring stations 
located throughout the region (Figure 3).  

The daily maximum values for ozone and NOx are 
used in the trend analysis. Missing data are either 
interpolated (less than 3 missing points) or 
replaced with average seasonally values in the 
series. As with ozone data, the NOx and NO2 time 
series were exhibiting high seasonally and 
temperature dependence. Therefore, these series 
data were transformed using Box-Cox transform 
to stabilise the variance before being analysed to 
find the trends.  

The modelling of the LRD component on the 
ozone, NOx and NO2, after removing the 

seasonally variation, shows that each of the series 
can be represented by an autoregressive (AR) 
model of order 3, a moving average (MA) of 
order 1 and a long range dependence (as 
represented by a fractional coefficient) 
component. 

 

Figure 3.  Sydney air quality monitoring network 

The trend part of the time series is taken to be the 
LRD component. To see the best trend pattern, a 
smoothing process using Kolmogorov-Zurbenco 
(KZ) filter (Rao, Zurbenco [1994] and Rao, 
Zurbenco et al [1997]) with 450 data points, 
KZ(450,1), were applied to Ozone and NOx trend 
components . 

The smoothed trends of Ozone and NOx for some 
sites are shown in Figure 4 and 5 below. In all the 
trend graphs, the values were obtained after an 
inverse transform of the transformed series. The 
trend values are relative to the long-term average 
value indicated by the unit value of 1. 
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Figure 4 Ozone trend at Lidcombe (1975 - 2000) 

The trend of ozone at a number of sites shows a 
consistent picture, an increase trend from about 
1994 is observed at all sites (except 
Campbelltown, which has an increasing trend 
from 1996). The magnitude of the increase is 
largest at Lidcombe and smallest at Woolooware. 



Overall, it can be seen that the levels of nitrogen 
oxides are declining since 1994 and then stabilise 
toward the end of 1998. But for ozone, an 
increasing trend is observed since 1994 for all 
sites. From the photochemical point of view, this 
could be explained by an increasing emission of 
volatile organic compound (VOC) across the 
Sydney basin or a decreasing level of nitrogen 
oxides where the extent of reaction is less than an 
optimum value. Blanchard [2000], Blanchard and 
Stoeckenius [2001] have shown that following a 
NOx control, increases in peak ozone 
concentration can happen in some areas where the 
extent is less than 0.6.  

The overall trend from the ozone data 
representing all the sites in the Sydney region 
(1993-2000) is mostly stable from 1994 with 
larger increase from 1996 and a stabilising trend 
from 1998. 

For NOx, the pattern is similar for sites in eastern 
Sydney (Lidcombe, Rozelle, Earlwood), except 
Woolooware with no trend. An increase level of 
nitrogen oxides from 1991 or 1992 to 1994 and 
then a decreasing trend from 1994 to 1998 is 
observed at these sites. From 1998 to 2000, the 
trend at these sites is stabilised. This decreasing 
trend from 1994 to 1998 at these sites could be 
due to the improvement in the emission of new 
vehicle fleet following from the introduction of 
catalytic converter from early 1989.  But the 
rising number of motor vehicles could offset this 
gain since 1998 as shown by the trend after 1998. 
In the south west of Sydney, there is a significant 
increase (of about 1pphm) in the levels of NOx at 
Campbelltown (1991-1994) and Liverpool (1993-
1995) compared to other sites before the trend is 
stabilised. A local nitrogen oxides source 
operating in the area could be the reason for this 
large increase. 

Since the introduction of unleaded petrol fuel, an 
increasing level of VOC is a strong possibility. 
Indeed, Bravo, Torres [2000] has shown that 
since the introduction of reformulated gasoline, 
the ozone level is worsened in Mexico City. To 
determine whether this is the case, the monitoring 
of VOC at a number of locations in the Sydney 
basin is necessary, as VOC data is not currently 
monitored continuously in Sydney.  

There is limitation about the LRD method to find 
air quality trend due to anthropogenic sources free 
from the meteorological effects. In most 
situations, where the data period for analysis is 
usually about 10 (or > 10) years, it is effective in 
isolating and removing short-term climate 
variability on the seasonal and inter-annual scales. 
But for long-term climate changes (such as the 
global warming on inter-decade scale), it may not 
be possible to separate these sources of climatic 
variability as they are at about or below the 
lowest frequency range that can be resolved with 
the time window of the available data. In other 
words, they are at about the same lowest 
frequency that can be attributed to the 
anthropogenic sources.  

NOx trend at Liverpool
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Figure 5 – NOx trend at Liverpool (1993-2000) 
These long-term climatic scales only affect 
certain air pollutants, such as ozone, which is 
strongly dependent on temperature for its 
production. In Sydney, analysis of the 
temperature daily maximum data from 1980 to 
1998 at Mascot airport near the coast, using LRD 
model, shows that the series does not exhibit LRD 
(d ≈ 0) and there is virtually no trend in 
temperature at this site. If this is also typical at 
other sites then the effect of the trend in long-term 
climatic change is too small or not detectable. The 
air quality trend of various pollutants, especially 
ozone and nitrogen oxides, described above are 
due entirely to anthropogenic sources. 

4.2. DISCUSSION AND CONCLUSION 

The trends of various pollutants at a number of 
sites in the Sydney area are presented. For ozone 
the trends are more consistent across all sites. It is 
probably due to the reason that this pollutant is 
more regional and well mixed with widespread, 
well-dispersed sources compared to others 
(Huang et al. [2000]). Trend of photochemical 
smog precursor, NOx, can be corroborated with 
change in the emission inventory over the time 
period under consideration (Wolff et al. [2001]). 
However, the only known available emission 
inventory for the Sydney region is the 1991-
emission data set. Such corroboration is therefore 
not possible.  

The separation of the low frequency component, 
identified as the trend of air pollutant time series, 
from other meteorological oscillations in the 
frequency spectrum has been recently used 



extensively to find the trend of ambient air quality 
monitoring data (Anh, Duc, Azzi [1997], 
Milanchus, Rao, Zurbenco [1998], Rao et al. 
[1997], Kuebler, Bergh, Russell [2001], Porter et 
al [2001]). This frequency separation is necessary 
to detect the very small trend signal buried inside 
the much stronger natural forcing components in 
the monitored data (Porter et al. [2001]. Various 
methods have been developed and these include 
the Kolmogorov-Zurbenco (KZ) filtering, the 
LRD method and the wavelet method. 

The Long Range Dependence model for air 
pollution time series has been shown to be useful 
in detecting the trend due to anthropogenic 
emission. It also has been shown that this method 
is equivalent to other methods for finding ozone 
trend but has the advantage that it can be applied 
to other pollutants as well. The method is applied 
to find the trend of Ozone and NOx time series at 
a number of stations in the Sydney basin. 
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