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Abstract: The form of the free surface in two-dimensional groundwater flow over a plane impermeable bed,
induced by percolating rainfall or irrigation, has been the subject of considerable study since the 1960's.  The
earlier analyses were related to drainage design, but more recently, and particularly for the case of a sloping
bed, the motivation has been the development of models of hillslope hydrology, and there has been particular
interest in linearisation of the Boussinesq equation.  This paper first develops a quasi-analytical solution for
the maximum water-table height in the case of a horizontal bed, and compares this with the Boussinesq and
linearised Boussinesq solutions.  In the case of a sloping bed, it is shown that the Boussinesq equation can be
reduced to a single dimensionless form, dependent on the system of coordinates and the direction of the
recharge.  Numerical solutions are given for the steady flow case, indicating the conditions under which the
linearised solutions depart markedly from the Boussinesq equation.
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1 . INTRODUCTION

Figure 1 illustrates the two-dimensional
groundwater system that is the subject of this
paper. Water flows over a plane impermeable bed
AB under the influence of a uniform recharge flux
velocity P.  The position of the free surface is
defined in terms of horizontal and vertical
coordinates x and h, or in terms of coordinates
parallel and perpendicular to the base, x' and h'.
Some authors have defined the flux velocity in
terms of its component P' normal to the bed.

This system can be analysed by an extended form
of the Dupuit-Forchheimer assumptions. Dupuit
(1863) assumed that (a) for small inclinations of
the free surface the streamlines can be taken as
horizontal, and (b) the hydraulic gradient is equal to
the slope of the free surface and does not vary with
depth. Boussinesq (1877) modified assumption (a)
for appreciable slopes by assuming the streamlines
will be nearly parallel to the bed, and this was
shown by Wooding and Chapman (1966) to lead to
the differential equation
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Figure 1.  Coordinate definition diagram
for free surface flow over a sloping bed

where K is the hydraulic conductivity, p = P/K,
and ε is the effective porosity (dependent on P),
i.e. the ratio of the unfilled pore space above the
free surface to the total volume.

Use of the same assumptions in horizontal and
vertical coordinates (x,h) results in a cubic second
order differential equation, but Towner (1975)
obtained an analytical solution for steady flow
which agreed closely with results from a Hele-



Shaw viscous flow model (Guitjens and Luthin,
1965).  By assuming ∂h/∂x sin α  cos α  « 1,
Chapman (1980) developed the approximation
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Chapman and Dressler (1984) showed that (1) also
results from the Darcy law and the assumption that
the flow is shallow.  Their derivation satisfies the
boundary condition at the free surface, which the
Boussinesq assumptions do not, and indicates that
(1) may be a better approximation than might have
been supposed from its original derivation.

It is intuitively obvious that the assumption of
'shallowness' will be least valid for high values of
p and low values of α.  In the next section, (1)
will be compared with a quasi-analytical solution
for steady flow with α = 0.

2 . S T E A D Y  F L O W  O V E R  A
HORIZONTAL BED

2 . 1 A Quasi-analytical Solution

The analytical approach adopted here is the use of
Green's second identity, which states that, for any
two harmonic functions f, φ in a region bounded
by a closed surface S

         o∫ f 
∂φ
∂n

 dS = o∫ φ 
∂f
∂n dS (3)

where the derivatives ∂f/∂n, ∂φ ,∂n are in the
direction of the external normal to the boundary.
This technique has been used to demonstrate that
the Dupuit equation gives the analytically correct
result for flow through a dam with vertical faces
(Chapman, 1957).

For the configuration shown in Figure 2, and
taking φ = Kh and f = x, the values of the variables
in (3) are shown in Table 1 for each segment of the
boundary.

It will be seen that an assumption is required for
the value of φ on EA before all the terms in (3) are
defined.  As EA and AB are streamlines, the field
in the neighbourhood of EAB will be close to the
family of streamlines xy = constant, and the family
of potentials x 2  - y2 = constant.  Thus the
velocity on EA will vary linearly from 0 at A to
-P at E, and the value of φ is given by

          φ = Kh0 - (h02 - y2)P/2h0           (4)

      Figure 2. Definition diagram for flow
over a horizontal bed

Table 1.  Boundary conditions for flow system
shown in Figure 2.

(vx is the velocity component in the x-direction)

Line f dφ/dn φ df/dn
AB x 0 ? 0
BC L -vx KhL 1
CD L -vx Ky 1
DE x P cos θ Ky -sin θ
EA 0 0 ? -1

Substituting the values from Table 1 and (4) in
(3), and performing the integrations, the final
result for the depth at E is

Ho2 = 
HL2 + p
1 - 2p/3

                         (5)

where H = h / L  and p = P/K.

It can be readily verified that this satisfies Youngs'
[1965] inequality, which with the present symbols
can be written

     Ho2 > HL2 + p > Ho2 (1 - p)

2.2   Comparison with Dupuit and
       Linearised  Solutions

For steady flow with α=0, (1) reduces to
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which is linear in h2 and has the solution

              Ho2 = HL2 + p                       (7)



The linearised form of (6) is

                 h
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where h
_

  is an average value of h.  This has the
solution

                 Ho = HL + p / 2H
_

If h
_
  is calculated as 
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 h dx  this becomes

  Ho = HL + p /(HL + √HL2 + 4p/3 )        (9)

Figure 3 shows the values of Ho calculated from
(5), (7), and (9) for 3 values of HL.

Figure 3.  Relation of dimensionless upstream
head to dimensionless recharge rate

As the Dupuit solution and its linear
approximation both ignore the seepage surface (CD
in Figure 2), it is not surprising that they both
underestimate the value of Ho.  It will be seen that
the departure of the Dupuit equation from the
quasi-analytical solution increases with increasing
values of p and HL.  For Ho < 0.3, the error is
less than 3%, and this could be taken as a practical
criterion of 'shallowness'.

The linear solution underestimates the Dupuit
solution by 13% when H L = 0, but this error
decreases with increasing HL and is negligible
when HL = 0.8.  It may be noted however that if
the average value of h is defined as  (ho + hL)/2,
the linear solution gives exactly the same result as
the Dupuit equation.

3.  FLOW OVER A SLOPING BED

3.1   Dimensionless Equations

Equations (1) and (2) can be expressed in the same
dimensionless form
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where the values of the dimensionless variables
given in Table 2 relate in order to (1), (2) and
Equation 18 in Henderson and Wooding (1964),
with p' = P'/K.

Table 2.  Relations between dimensionless
variables and symbols shown in Figure 1.
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3.2   Steady Flow Solution

For steady flow, (10) can be integrated to give

            H 
∂ H
∂X

 - 2H + λX = A                    (11)

Towner's (1975) equation for steady flow in
horizontal and vertical coordinates can be expressed
in this form by the transformations shown in the
last line of Table 2.

The integration constant A in (11) will be zero if
the boundary condition at X=0 is either H = 0 or
∂H/∂x = 2 .  For all but the first line in Table 2,
the latter condition implies that ∂h/∂x = ∂h'/∂x' =
tan α, so that the water surface is horizontal, i.e.
there is a groundwater divide. For the first line, the
condition ∂H/∂X = 2 implies ∂h'/∂x' = (1-p) tan α,
so that the surface is not quite horizontal.

With A = 0, (11) is homogeneous and can be
readily solved. It has two forms, depending on
whether λ<1 or λ>1. Henderson and Wooding
(1964) gave solutions in terms of a scaling
constant and, for λ>1, a parameter.  Equivalent,
though apparently dissimilar, solutions can be



obtained by following the integration technique of
Schmid and Luthin (1964), with the following
results:

For λ<1

H(X) = W2X - (W2-H(1))(W1X - H(X)
W1 - H(1) )W1/W2

         ( 1 2 )

where W1 = 1 + √1-λ  and W2 = 1 - √1-λ

For λ>1
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Both (12) and (13) can be solved recursively.
From the free surface profiles obtained with
downstream depth H(1) = 0 for low (5°) and high
(30°) slopes, three characteristics of the depth H =
h/L, in the original coordinates, have been
calculated for each of the transformations shown in
Table 2. These are the depth H(0) at the upstream
boundary, the mean depth Hav, and the maximum
depth Hm. The general form of the variation of
H(0) with recharge p is shown in Figure 4, while
Figure 5 shows that the position of maximum
depth moves up the slope with increasing recharge
and decreasing bed slope.  Both graphs conform
with the Dupuit solution for a horizontal bed.

Figure 4.  Relation of upstream depth to bed
slope for recharge rates 0.1, 0.01 and 0.001.

Figures 6 and 7 show that the upstream depth from
the Wooding and Chapman (1966) solution agrees
with the Towner (1975) solution at low bed slopes
and lower recharge rates, but overestimates it at
high slopes.  The Chapman (1980) solution
overestimates the upstream depth at low slopes and

  
Figure 5.  Value of X for maximum flow depth,

related to bed slope and recharge.

Figure 6. Upstream depth for bed slope 5°

Figure 7.  Upstream depth for bed slope 30°

higher recharge rates, and at all recharge rates for
high slopes.  The Henderson and Wooding (1964)
solution underestimates the upstream depth at low
slopes and high recharge rates, and seriously
underestimates it under all conditions on high
slopes.  Figures 8 and 9 show similar results for
the maximum depth, and are very close to the
graphs for the mean flow depth (not shown).



Figure 8.  Maximum depth for bed slope 5°

Figure 9.  Maximum depth for bed slope 30°

3.2  Linearised Solutions

Two forms of linearisation have been studied, in
terms of linearising H and H2 in (10), and will be
referred to as Types 1 and 2 respectively.

For Type 1, (11) becomes

            H
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which has the general solution

     H(X) = (λH
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If it is assumed that H(0) = 0, this results in
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which is an extension of the result obtained by
Koussis and Lien (1982) for H(1)=0.

The mean depth H
_

 is obtained by setting

H
_ 

= ∫
0

1

 H(X) dX  in (16), and this gives rise to an

equation which can be solved recursively for H(X).

However, if this equation results in dH/dX ≥ 2 at
X = 0, it follows that H(0) > 0, and the appropriate
boundary condition for a no flow boundary is
dH/dX = 2, from which it is readily shown that

       A = 2(H
_

 - H(0))  and B = H 
_

(1 - λ/4)      (17)

and a recursive solution can be obtained. By setting
to zero a linearised expression for the flow at the
upstream boundary, Koussis (1992) obtained
solutions in which H(0)>0 for all values of p, and
therefore do not accord with the behaviour of the
nonlinear solution.

For linearisation Type 2 (Werner,1957), we put Y
= H2  in (10), which for steady flow results in
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This is linearised by putting √ Y = H
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, and
integrated to give
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which has the solution
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Equations which can be solved recursively are then
developed in the same way as for Type 1.

Typical comparisons of the two linearisations with
the Dupuit solution are shown in Figures 10 and
11.  In general, Type 1 fits better at low flow
depths and Type 2 at higher depths.  Both types
retain zero upstream depth at higher recharge rates
than the Dupuit solution.

4.    CONCLUSIONS

For a horizontal bed, the quasi-analytical solution
leads to the conclusion that the Dupuit equation
can be used with negligible error when the ratio of
flow depth to length is less than 0.3, conditions
which would be valid in most natural situations.

The Boussinesq equation for steady flow over
sloping beds is best modelled by Towner's (1975)
solution, but this has no extension into unsteady
flow situations.  Chapman's (1980) approximation
does not suffer from this limitation, with errors
only  under  conditions  of  low  slopes  and  high



 
Figure 10. Upstream depth for bed slope 5°

Figure 11.  Maximum depth for bed slope 30°

recharge rates.  Wooding and Chapman's (1966)
solution is almost identical with Towner's, except
for the upstream head with high slopes, but has the
disadvantage of an inconvenient coordinate system.
Henderson and Wooding's (1964) solution is
satisfactory at low slopes, but at high slopes
demonstrates the problems associated with
assuming the recharge is at right-angles to the bed.

Both types of linearisation give close
approximations to the nonlinear model, with Type
1 slightly better at small flow depths and Type 2
better at moderate to high depths.  However, the
solutions are not easy, requiring iterative
calculations of the mean flow depth which appear
to have been ignored in recent unsteady flow
models (Sloan, 2000; Verhoest and Troch, 2000).
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