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Abstract: Knowledge of temporal and spatial variation in root zone soil moisture content across Australia is 
vital for a wide range of environmental and socio-economic activities.  However, such information is not 
currently available, due to an inability to monitor with ground-based point measurement techniques at an 
appropriate spatial resolution, and the uncertainty associated with land surface model predictions.  Advances 
in remote sensing instruments and algorithms have made possible monitoring of spatial variation in surface 
soil moisture content for areas of low to moderate vegetation, but these measurements are limited to the top 
few centimetres at most.  While soil moisture measurements for such a thin surface layer are not very useful 
on their own, this surface data is used to constrain land surface model predictions through the process of data 
assimilation, yielding improved estimates of soil moisture not only in the surface layer, but also at depth.  
The C-band passive microwave remote sensing data from the Scanning Multi-frequency Microwave 
Radiometer (SMMR) is assimilated into a land surface model for the period 1979 to 1987.  We are limited to 
this time period as there has been no appropriate space-borne passive microwave sensor from then until May 
2002, when the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) was 
launched.  Moreover, SMMR has the same frequencies as AMSR-E making it an ideal developmental test 
bed until AMSR-E data become available.  The disadvantage of the SMMR time frame is the lack of 
adequate soil moisture validation data, meaning that it is difficult to assess the improvement of skill in 
predicting root zone soil moisture content when surface observations are assimilated.  We assess the 
improvement in skill by comparing with patterns in Normalised Difference Vegetation Index (NDVI) data 
and the limited soil moisture profile data available. 
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1. INTRODUCTION 

Knowledge of spatial and temporal variability in 
root zone soil moisture across Australia is crucial 
in a wide array of environmental fields.  Such 
applications range from weather and climate 
prediction to early warning systems (e.g. flood 
forecasting), climate-sensitive socio-economic 
activities (e.g. agriculture and water management) 
and policy planning (e.g. drought relief and global 
warming).  However, reliable information on root 
zone soil moisture content at the continental scale 
is not currently available for a variety of reasons.  
First, there is a limited area that can be monitored 
with an adequate spatial and temporal resolution 
using ground based point measurement 
techniques (Grayson and Western, 1998).  This 
stems from the large variability in soil moisture 
content and soil properties over short distances 
(Western et al. 1999, 2002), and the cost involved 
with installation, calibration and maintenance of 
soil moisture monitoring equipment.  Second, 

there is a high level of uncertainty associated with 
continental scale land surface models, with a wide 
variation between the different models when 
using the same input parameters and atmospheric 
forcing (Houser et al., 2002). 

Advances in passive microwave remote sensing 
have made possible the measurement of soil 
moisture content over large areas on a frequent 
basis under certain conditions.  While this would 
appear to be an obvious alternative for gaining 
knowledge of spatial and temporal variation in 
soil moisture content across Australia, there are a 
few limitations.  For instance, this only provides a 
soil moisture estimate of the top few centimeters 
at most and is limited to areas of low vegetation 
(Du et al., 2000, Engman 2000) away from large 
water bodies such as the ocean.  Moreover, due to 
the relatively weak signal observed, space borne 
sensors have a coarse resolution, being on the 
order of 25km.  While this resolution is 
appropriate for broad scale applications such as 
weather prediction and policy planning, it is not 



appropriate for small scale applications such as 
on-farm water management.  Further, surface soil 
moisture measurements are highly dependent on 
the meteorological conditions of the last few 
hours to days, and do not give a direct indication 
of the more relevant deeper layer soil moisture 
content.  Thus methods for obtaining root zone 
soil moisture content from these surface 
measurements need to be developed.  While there 
have been numerous synthetic experiments 
demonstrating such a capability through 
assimilation of these surface measurements into a 
land surface model (eg. Entekhabi et al., 1994; 
Walker and Houser, 2001; Reichle et al., 2001), 
there have been relatively few studies that have 
used real space-borne data. 

 
Figure 1.  Catchment delineations for Australia. 

The reason for this little use of space-borne data 
is the lack of a dedicated soil moisture remote 
sensing mission.  However, global soil moisture 
data has recently become available from the 
6.6GHz channels (C-band) of the Scanning 
Multichannel Microwave Radiometer (SMMR) 
flown from October 1978 to August 1987.  There 
was no replacement C-band sensor until May 
2002 when the Advanced Microwave Scanning 
Radiometer for the Earth observing system 
(AMSR-E) was launched, once again making 
global measurement of surface soil moisture 
content possible.  Since C-band data is the best 
that we can hope for over the next several years, 
the historic SMMR data set provides an excellent 
data source in preparation for using AMSR-E 
observations when its’ calibration and soil 
moisture retrieval algorithm has been finalised. 

In this paper the spatial and temporal variation in 
soil moisture content across the Australian 
continent is estimated during the period 1979 to 
1987, by assimilating the space-borne SMMR 
observations in a land surface model forced with 
observation-constrained European Center for 
Medium-range Weather Forecasts (ECMWF) re-
analysis data.  Evaluation with soil moisture 
measurements is difficult due to the time frame of 
SMMR data, and the fact that SMMR cannot 
measure soil moisture for areas within 100km of 
the coast.  Hence this paper relies heavily upon 
the patterns in Normalised Difference Vegetation 
Index (NDVI) data, using vegetation vigor as a 
measure of soil moisture availability.   

2. MODELS 

2.1. Land Surface Model 

The land surface model used in this study is the 
catchment-based land surface model (CLSM) of 
Koster et al. (2000).  The key innovations of this 
model are the explicit inclusion of sub-catchment 
spatial variability and the model domain, which is 

based on the hydrologic watershed as defined by 
the topography (Figure 1) rather than an arbitrary 
grid.   

The model physics are based on TOPMODEL 
(Beven and Kirkby, 1979) concepts for relating 
the water table distribution to the topography.  
Soil moisture status is modelled using three 
prognostic variables (defined as catchment deficit, 
root zone excess and surface excess) and a special 
treatment of transfer between them.  These 
prognostic variables consider the water table 
distribution and non-equilibrium conditions in the 
root zone.  From these prognostic variables it is 
possible to calculate surface (top 2cm), root zone 
(top 1m) and profile soil moisture content, and the 
fraction of the catchment under saturated, 
unstressed and stressed soil moisture conditions.  
A complete description of this land surface model 
is given by Koster et al. (2000) and Ducharne et 
al. (2000), and is summarised further by Walker 
and Houser (2001). 

2.2. Kalman Filter 

The Kalman filter is a statistical data assimilation 
approach that tracks the mean and covariances of 
a state vector (ie. soil moisture content in our 
case) using a series of forecast and update steps.  
An update is made whenever observations 
become available.  The correction made to the 
state estimate is the difference between the actual 
observation and the model prediction of the 
observation, weighted by the ratio of covariance 
of the model states to covariance of observation 
and model predicted observation, multiplied by a 
matrix for mapping between model states and 
observations.  Starting from an initial estimate of 
the model uncertainty, the coviances of the model 
states are forecast using standard error 
propagation theory.  The reader is referred to 



Walker and Houser (2001) for a more detailed 
discussion of the Kalman filter, the Kalman filter 
equations and their application to the catchment-
based land surface model.  

We have used a one-dimensional Kalman filter 
for updating the CLSM prognostic state variables 
in this study.  A one-dimensional filter has been 
used because of its computational efficiency, the 
fact that spatial correlations would be weak at the 
scale of catchments used, and that model 
calculations are performed independent of the 
adjacent catchments.  Spatial correlations in soil 
moisture content for distances greater than 50km 
would be due to large scale correlations in 
atmospheric data, soil properties, vegetation and 
topography (Western et al., 2002). 

Diagonal terms for the initial covariance matrix 
were specified to have a standard deviation equal 
to the maximum difference between the initial 
prognostic state value and the upper and lower 
limits, with the off diagonal terms as zero.  The 
diagonal terms of the model error covariance 
matrix were the predefined values of 0.00025, 
0.0025 and 0.025 mm/min for surface excess, root 
zone excess and catchment deficit respectively, 
with the off-diagonal terms specified to be zero. 
The assumption of model error independence for 
the three soil moisture prognostic variables is 
valid, as the physics used for forecasting these 
three prognostic variables are different. 

3. DATA SETS 

3.1. Model Parameters 

The CLSM requires topographic, soil and 
vegetation parameters. The topographic 
parameters are the mean, standard deviation and 
skewness of the compound topographic index.  
The catchment delineations and topographic data 
were taken from the GEODATA 9” digital 
elevation model of Australia, and topographic 
parameters scaled to 100m equivalent.  The 
catchments used in this application (Figure 1) 
have an average area of 2,500km2. 

Soil parameters include porosity, wilting point, 
saturated hydraulic conductivity, the Clapp and 
Hornberger (1978) soil texture parameter, 
saturated matric potential and total soil depth.  
Apart from soil depth, soil parameters were 
inferred from dominant soil texture information 
given by the 5′ × 5′ resolution Food and 
Agriculture Organisation (FAO) digital soil map 
of the world, using the values in Cosby et al. 
(1984).  Total soil depth was taken from the first 
International Satellite Land Surface Climatology 
Project (ISLSCP) initiative (Sellers et al., 1996a) 
1° × 1° resolution global data set. Catchment 

partitioning and timescale parameters required by 
the CLSM were pre-processed using the 
topographic and soil parameters by the 
methodology of Ducharne et al. (2000). 

Vegetation parameters include vegetation type, 
greenness fraction and Leaf Area Index (LAI).  
Vegetation type information was taken from the 
ISLSCP Initiative 1 data set.  Monthly values of 
greenness fraction and LAI were derived from 
Advanced Very High Resolution Radiometer 
(AVHRR) measurements of NDVI at 1° × 1° 
resolution using the relationships of Sellers et al. 
(1996b).  Climatologies were obtained by 
averaging the parameter estimates over the time 
period of 1982 to 1990, and used for simulation of 
the years outside this time period.  The snow free 
albedo was calculated from the LAI, greenness 
fraction, vegetation type and a look-up table 
(Koster and Suarez, 1991), while zero plane 
displacement height and momentum roughness 
length was calculated from the month of year, 
vegetation type and a look-up table (Koster and 
Suarez, 1996). 

3.2. Forcing Data 

Atmospheric forcing data were from an 
observation-constrained 15-year (1979-1993) 
ECMWF Re-Analysis (ERA-15) data set (Berg et 
al., 2001).  The atmospheric data fields used 
include: air temperature and humidity at 2m, wind 
speed at 10m, total and convective precipitation, 
downward solar and longwave radiation and 
atmospheric pressure.  

The atmospheric data fields from re-analysis are 
subject to significant model bias, so the re-
analysis fields were constrained to monthly 
average observations using a bias correction 
technique.  Observation constraints were imposed 
using a difference or ratio correction, depending 
on the field. The reader is referred to Berg et al. 
(2001) for a complete description of the 
observation constrained forcing data set.  

3.3. Initial Conditions 

The initial land surface model states for 1 January 
1979 were derived by driving the CLSM to 
equilibrium.  The spin-up equilibrium states were 
obtained by cycling the land surface model with 
the 1979 atmospheric forcing data for 10 years.  
This is the typical way that initial conditions for 
land surface models are obtained. 

3.4. Observations 

Surface soil moisture observation data were 
derived from the 6.6GHz vertically and 
horizontally polarised brightness temperature 



3.5. Evaluation Data measurements from the space-borne SMMR 
instrument on board the Nimbus-7 satellite.  The 
radiative transfer model of Mo et al. (1982) was 
used to solve for the surface soil moisture content 
and vegetation optical depth simultaneously using 
the microwave polarisation difference index non-
linear iterative optimisation procedure of Owe et 
al. (2001).  Constant values for single scattering 
albedo and roughness, and equal horizontal and 
vertical polarisation optical depth values were 
assumed.  Soil temperature was estimated from 
the 37GHz vertically polarised brightness 
temperature measurements, soil properties were 
from the FAO soil map, and dielectric constant 
was related to soil moisture content by the Wang 
and Schmugge (1980) dielectric mixing model.  

There is little soil moisture data for Australia 
during the SMMR time period (1979-1987).  
Moreover, due to the coastal dwelling nature of 
the Australian population, a large proportion of 
the data available is within 100km of the coast.  
This means that while simulation results can be 
compared for those locations, no improvement 
due to assimilation can be expected.  A similar 
caveat applies to data in heavily vegetated areas.  
The soil moisture data for evaluation were from a 
database of soil moisture observations around 
Australia collated by Ladson et al. (2002).  These 
data consist mostly of information on total profile 
dynamic water storage, and in some cases, time 
series of changes in profile soil water storage.  
While these data are not ideal, they do provide 
some information on spatial and temporal 
variability over the observation period.  However 
the results of these comparisons were 
inconclusive and are not discussed further here.  

While there was no calibration of the surface soil 
moisture retrieval algorithm to ground measured 
soil moisture data, results compared well with 
point measurements of soil moisture in the top 10 
cm layer and satellite-derived NDVI data (Owe et 
al., 2001). The comparisons were for two test 
sites in Illinois, USA that maximised the number 
of soil moisture stations in each site. The test sites 
had a mixture of pasture, cropland and woodland. 

Due to the shortcomings in available soil moisture 
data, this study has placed an emphasis on 
evaluation by comparing patterns in root zone soil 
moisture with patterns in NDVI data.  The basis 

 
Figure 2.  Comparison of model predicted root zone soil moisture content with (centre row) and without (top 
row) assimilation against NDVI data (bottom row), for prior to onset of the 1982/83 drought (left column), at 

the peak of the drought (centre column) and return to normal conditions (right column). 



for this is that Australian native vegetation 
consists predominantly of evergreen species, 
meaning that changes in NDVI should be strongly 
related to soil moisture and climate.  The NDVI 
data used for evaluation are from the 0.1° × 0.1° 
NOAA/NASA Pathfinder AVHRR Land (PAL) 
data sets that cover the period from July 1981 
through to present.  These data are 10-day 
composites of the daily data with the fewest 
clouds.  The three composites per month are for 
days 1 through 10, 11 through 20, and then the 
remaining days. 
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Figure 3.  Comparison of mean NDVI against 

root zone soil moisture with (squares) and without 
(circles) assimilation. 

4. RESULTS 

Comparisons between NDVI and root zone soil 
moisture data were made by firstly calculating the 
10-day average root zone soil moisture content 
from the 6-hour simulation output with and 
without assimilation.  Figure 2 shows a 
comparison of the spatial soil moisture and NDVI 
data prior, during, and following the 1982/83 
drought.  These results are representative of other 
times, and cover the range from dry through wet.  
From a qualitative sense, it is quite clear that there 
is a better agreement in the spatial pattern of root 
zone soil moisture from assimilation with that 
from the NDVI data, particularly in the south-
eastern (June 1982) and eastern (June 1983) parts 
of the continent.  There is little difference 
between the root zone soil moisture with and 
without assimilation in February 1983, with the 
observed pattern being largely a function of the 
underlying patterns in soil properties. 

A quantitative comparison between the NDVI and 
soil moisture data was made by mapping both the 
root zone soil moisture and NDVI data onto a 
0.5° grid, and comparing on a pixel-by-pixel 
basis.  Figure 3 shows the results for mean NDVI 
response for soil moisture in 0.01v/v bins.  While 
there was a large amount of scatter across the 
range of soil moisture content values (average 
standard deviation was approximately 0.15 in 
NDVI for both cases), there is an obvious trend in 
the mean.  The assimilation results show a near 
linear relationship across all soil moisture 
contents, while the results without assimilation 
show a saturation of the NDVI values for soil 
moisture content greater than about 0.25v/v.  This 
linear relationship for the assimilation data 
suggests a stronger correlation between root zone 
soil moisture and NDVI than for without 
assimilation.  The saturation suggests that the 
CLSM has a dry bias, as can also be observed in 
Figure 2.  However, it is difficult to draw 
exhaustive conclusions from this comparison due 
to complicating effects, such as temporal 
variations in NDVI values from seasonal, climatic 
and vegetation variability.  Current work is 

focused on making comparisons that eliminate 
these complications. 

5. CONCLUSIONS 

This paper has presented results from the first 
known study to use space-borne measurements of 
surface soil moisture content to estimate the 
spatial and temporal variation of soil moisture 
content across Australia by the process of data 
assimilation.  Unfortunately the lack of 
appropriate soil moisture data and mismatch in 
scale between model output and available data 
made it difficult to draw any conclusive 
statements regarding improvements in soil 
moisture predictions.  There was however an 
obvious increase in correlation between soil 
moisture predictions and NDVI data when 
SMMR surface soil moisture data were 
assimilated.  This provides some encouragement 
for pursuing assimilation experiments using the 
new AMSR-E data, and the collection of more 
appropriate ground-based soil moisture data for 
validation purposes. 
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