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Abstract: In this paper we utilise a collection of modelling tools based on the Bayesian paradigm, to develop 
a framework that is capable of delivering the continuum of “value added” science; the progression from the 
acquisition of field-based and remotely-sensed evidence, through to the development of decision support 
structures that have the potential to assist decision making for the management of complex systems. By way 
of example, we utilize the approach to identify the relative strengths of dependency of a range of potential 
causative factors associated with the presence-absence of large-scale coral bleaching. For the factors 
considered, we show that short-term maximums in sea surface temperatures provide the strongest causative 
link to bleaching related coral mortality. We demonstrate however that the composition of the coral 
community affords some level of protection against temperature related mortality. We discuss the benefits of 
the outlined methodology in terms of providing a decision support platform to aid in the management of 
large-scale coral reefs ecosystems; a system in which current and future uncertainties can not be ignored.  
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1. INTRODUCTION

Traditional coral reef science has been extremely 
successful in documenting the infinite complexity 
of coral ecosystems. It has been able to 
demonstrate that this complexity arises from the 
fact that coral ecosystems are richly connected via 
processes and feedback mechanisms that operate 
over a variety of spatial and temporal scales. 
Beyond the appreciation for this complexity, the 
large-scale management of coral reef ecosystems 
is now heavily reliant on the ability to forecast the 
potential impacts of change (e.g. due to climate 
change or any other form of human impact), such 
that appropriate preventative measures can be 
implemented. 

It is clear, that at any level of complexity, 
simulation models for the management of coral 
reef systems will never replicate the complexity 
in nature. Less clear is the conclusion that a 
prudent environmental modelling strategy is to 
avoid detailed mathematical characterization of 
natural processes for models developed to assist 
coral reef policy-makers and managers. This 
recommendation, from those who have studied 
environmental simulation and policy (e.g. 
Hodges, 1987) is based on the observation that 
the most useful predictive management models 
are often extremely simple, or at least 
conceptually simple. 

The questions of interest to decision makers 
broadly concern the relationship between a 
management option and an attribute of concern to 
the public e.g. “over what area and time-frame 
can we expect improvements in the growth and 

recovery of inshore coral reefs as new water 
quality targets are met?” Complex environmental 
simulation models are not essential to answer 
questions of this nature, indeed there is to much 
unpredictability in nature to mathematically 
describe all the mechanisms affecting coral 
growth in natural waters.  An alternative approach 
is to embrace the inherent uncertainty in natural 
systems. This method has been employed by the 
physicist who uses probabilistic expressions to 
capture the aggregate response of molecular 
motion in statistical mechanics. In a similar 
manner, a coral ecologist could summarise small-
scale processes with probabilistic expressions that 
characterize the aggregate response of interest to 
the decision maker e.g. application of a useful 
predictive framework might yield the following 
statement: “if annual nutrient loading to river X is 
reduced by 40% or more, the decadal probability 
of major coral mortality is less than 0.2”. 

These observations about models and prediction 
reflect a decision analytic perspective (Clemen, 
1996) and lead to the consideration of influence 
diagrams and Bayesian Belief network (BBN) 
models (Pearl, 1988). A BBN is a ‘causal 
reasoning’ tool that has recently attracted an 
increasing number of researchers in the field of 
applied artificial intelligence where uncertainty is 
an intrinsic characteristic of the problem domain. 
The Bayesian and conditional probability theory 
upon which BBNs are founded, provides a 
mathematical framework for updating one’s belief 
in the occurrence of an outcome or event, given 
the observation of certain pieces of evidence; 



emulating the way in which and expert might be 
expected to make decisions within an uncertain 
environment. 

 
Figure 1. Survey sites within the GBR study area. 

In this paper, we demonstrate the application of 
the Bayesian paradigm, and in particular the 
decision support capabilities provided by BBNs 
for the task of identifying the relative importance 
(i.e. dependency) of a range of potential causative 
factors associated with the presence-absence of 
large-scale coral bleaching. We approach the 
problem from the standpoint of letting the 
‘information content’ of the data tell the story 
about the level of complexity and relative 
strengths of any dependencies. As such, we 
endeavour to integrate spatial data sets from a 
variety of sources, including satellite-derived sea 
surface temperature (SST) measurements, ocean 
current predictions from a physical oceanography 
model, and bathymetry data from a digital 
elevation model.  

2. CASE STUDY: IDENTIFYING CORAL 
REEFS WITH A LOW RISK-TO-
BLEACHING  

2.2. The 2002 GBR Bleaching Data Sets 

Ecological characterization and bleaching 
impact assessments 

2.1. Background Following the 2002 bleaching event, a series of 
three field cruises were undertaken over a total of 
30 days between June 25 and August 1. The 
surveys assessed the environmental setting, 
bleaching impact and coral mortality for coral 
communities from 150 sites at 50 locations on 32 
reefs. The survey locations ranged from the 
southern to the central GBR (~1000 km), and 
from less than 1 km from the coast to >200 km 
out into the Coral Sea (Fig. 1).  

The term ‘coral bleaching’ summarises one of the 
most insidious large-scale hazards faced by coral 
reefs: environmentally stressed corals become 
visually pale (or bleach white) through (i) the 
expulsion of damaged zooxanthellae or (ii) the 
reduction in photosynthetic pigments within the 
zooxanthellae, or (iii) a combination of both 
responses (see e.g., Berkelmans, 2002). Coral 
bleaching is a generalised stress response caused 
by prolonged exposure to anomalous 
environmental conditions; in particular, sea 
temperatures that are more than 1oC higher than 
the long-term mean summer maximum for the 
location in which the coral resides. Continued 
expose to anomalous conditions often results in 
the bleached coral experiencing partial or whole 
colony mortality. Alternatively, the return to 
‘normal’ environmental conditions within specific 
time-frames (Berkelmans, 2002) can result in the 
apparent recovery to pre-bleached conditions. 

Each site was assigned a habitat class. For the 
mid- and outer shelf reefs, four classes were 
identified; outer slope, lagoon, back-reef, or 
channel. For the inner, coastal reefs, a single 
‘fringing reef’ class was used. Assessments 
involved a 20-30 minute survey, during which a 
taxonomic inventory was complied of observed 
hard and soft corals, and a bleaching impact 
category noted for each taxon.  

Indicators of bleaching and coral mortality were 
developed from the visual assessment data, and 
four ‘community types’ were developed using K-
mean clustering (see Done et al., 2003 for 
details). Types 1, 2 and 3 were offshore (mid- and 
outer shelf) reefs, whereas Type 4 communities 
were coastal. 

During the southern-hemisphere summers of 1998 
and 2002, large regions of the Great Barrier Reef 
(GBR) experienced unprecedented heating 
anomalies and associated coral 
bleaching/mortality. Climate models suggest a 
future with increased frequency of these 
anomalous events, so there is an imperative to 
identify low risk-to-bleaching areas; which could 
form logical sub-units in the design of bleaching-
resistant marine protected areas with the potential 
to be reservoirs of abundance and biodiversity in 
coming decades. 

Heat Stress Characterisation of the thermal 
environment 
Maximum Heat Stress: Following suggestions 
from Berkelmans et al. (2003) and using 1km2 
SST estimates as derived from advanced very  



 
Figure 2. Maximum heat stress indicator Figure 3. Patterns of Cooling, indicating the 

‘effective’ distance from the 100m isobath. high resolution radiometer (AVHRR) sensors 
aboard the NOAA16 satellite, we developed a 
proxy heat stress indictor for each 1km2 pixel 
based on the highest accumulated SST total for 
any three-day run of summer SST (2002). Figure 
2 displays the spatial variation of the 3-day heat 
stress indicator for the survey region. The map 
indicates that very hot water bathed many reefs in 
the survey region, right across the reef tract from 
the coast to Coral Sea. On the other hand, it also 
indicates how much of the outer reef tract escaped 
exposure to even brief periods of hot water. 

2.3. Results 

We now have a series of spatial indicators to 
describe the potential thermal environment of our 
study sites, along with the field-derived proxies 
for bleaching impacts, coral mortality, and coral 
assemblages (i.e. community type). The challenge 
now is to see the extent to which the ‘information 
content’ of our proxies allows us to predict 
locations vulnerable to bleaching and coral 
mortality; in particular the ability to infer low 
risk-to-bleaching areas.  Patterns of Cooling: Waters below the 

thermocline are important sources of cooling for 
shallow water corals if they can be mixed into 
surface waters. As a proxy indicator for the ‘ease’ 
of access of shallow corals to this cool oceanic 
water, we used hydrodynamic model predictions 
of average tidal current strength to derive a GIS-
based cost surface that indicates the ‘effective’ 
distance for all points from the 100 m isobath 
which borders the GBR and Coral Sea (Fig. 3). 
To generate the cost surface, the range of currents 
within the study region were normalised between 
0 and 1; the lower the number the larger the 
strength of currents (i.e. lower flow resistance). In 
traveling from the 100m isobath, the linear sum of 
all 1 km2 pixels encountered in reaching any point 
constituted its effective ‘cost’. Since the dominant 
water movement from the prevailing seas is from 
the south-east, the linear sum was calculated for a 
north-westerly direction of travel. The final 
‘accumulated’ cost surface was then also 
normalised to lie in the range 0 to 1. The general 
hypothesis is that the greater the cost, the lower 
the cooling potential from this source. 

An exploratory Bayesian analysis 
We adopted novel artificial intelligence methods 
to explore our proxy data-sets in an integrated 
way.  Initially, we used the dependency analysis 
algorithm of Cheng et al. (2002), to search for 
structural dependency relations among the 
information contained within our proxy 
indicators. For ease of reference, Table 1 provides 
the name and brief description of the indicator 
variables used in the analysis.  

To aid the dependency analysis process, we 
imposed the following ‘expert’ domain 
knowledge (based on the current beliefs about 
bleaching resistance, and refined in this study): 

• 

• 

• 

cost100 and habitat are externally determined 
drivers that cannot be affected by anything 
else in the coral reef system, 
community has a direct dependency on 
habitat, and 
bleach and dead are hypothesis (i.e. event) 
variables, which can potentially accept 
dependency linkages from all system 
variables. 

 



Table 1. Summary of the proxy variables used 
in the dependency analysis. 

Variable Description 

cost100 ‘Effective’ distance from 100 m depth 

habitat Classified habitat class 

community Classified coral community types 

max3day Max. 3-day run of summer SST (2002) 

bleach Classified bleaching impact 

dead Classified coral mortality 

max3day
HIGH
LOW
MEDIUM

   0
 100
   0

dead
HIGH
LOW
MEDIUM

21.1
39.1
39.8

bleach
HIGH
LOW
MEDIUM

18.4
42.9
38.8

community
KM1
KM2
KM3
KM4

32.6
21.3
29.3
16.8

habitat
BACK RF
CHANNEL
FRINGE
LAGOON
OUT SLP

36.1
9.68
21.3
16.8
16.1

cost100
HIGH
LOW
MEDIUM

29.8
51.1
19.1

 
Figure 4. BBN1 – predictive model of coral mortality, 
which includes ‘evidence’ nodes to describe both the 
thermal environment and coral reef characteristics. 

Bayesian Belief network development 
The identified dependency structure, along with 
the associated strength of the linkages, was used 
to construct a BBN. The BBN encodes the 
dependency relationships between our proxy 
indicator variables; which are represented as 
nodes. Individual nodes are constrained to contain 
the finite number of mutually exclusive states 
(e.g. high, medium, low) that describe our proxy 
variables. Nodes are connected by arcs 
(dependency links), which point from parent 
nodes (causes) to child nodes (effects). The 
absence of a link between two variables indicates 
independence between them. The strength (i.e. 
certainty) of the causal link between a child and 
its parent node(s) is summarised through a 
conditional probability distribution usually in the 
form of a conditional probability table (CPT). The 
CPT specifies the conditional probability of the 
child node being in a particular state, given the 
states of all its parents: P(childparent1, 
parent2,….parentN). Should a node have no 
parents, the table reduces to an unconditional one: 
P(child).  Given the structure of the BBN, and the 
associated conditional probabilities, it is possible 
to determine the likelihoods of different states in 
each child, given the likelihoods of different 
states in its parent(s).  The power of the BBN 
comes to light whenever we change the likelihood 
of parent states, based on field evidence or expert 
opinion. The effects of the evidence or opinion 
are propagated throughout the dependence-
structured network via a ‘probabilistic inference 
algorithm’, and the resulting probabilities of the 
affected nodes updated (see Lauritzen and 
Spiegelhalter, 1988).  

dependency on habitat, the community nodal 
variable was also shown to have some level of 
dependency on cost100; potentially reflecting 
how GBR coral community types ‘track’ water 
motion and wave impact gradients (Done, 1982). 
No link was established between community and 
bleach, but a direct linkage was found between 
the community and dead nodal variables; perhaps 
reflecting that the information content of the 
bleach variable is a little confounded due to the 
lateness of the survey (by the time of the June to 
August surveys, some corals that bleached in 
February would have regained normal colour). 

Rather than providing descriptions of the CPTs 
that indicate the strength (i.e. certainty) of the 
developed dependency linkages, we instead chose 
to undertake a sensitivity analysis to identify the 
network components which have the greatest 
influence on coral mortality. The sensitivity 
analysis was conducted by systematically varying 
the values of individual network components to 
determine how they affected the dead nodal 
variable; the results highlighting how much the 
mean belief value of the dead node could be 
influenced by a single finding at each of the other 
nodes in the network. We restricted our summary 
to just the high state. From Figure 5 we can see 
that for the high state of dead, the bleach and 
max3day nodal variables are the most influential 
components within the network. Due to the 
potential for high correlation between the level of 
bleaching and the level of mortality we would 
expect that knowledge of bleach should provide a 
high level of inference on dead. Of more interest, 
is the relative importance of max3day compared 
to the other nodal variables. The result suggests 
that in the absence of any other information, 
selection of sites in areas classified as low for the 
max3day indicator would greatly improve the 

We used the Netica (http://www.norsys.com) 
network editor to depict the dependency structure 
identified from our available domain variables 
(Fig. 4). Graphically, it can be seen that as 
expected, the state of the heat stress variable 
max3day, was found to have a dependency on 
cost100, while it in turn provides a level of 
dependency for the states of the bleach and dead 
nodal variables. Along with the enforced  

http://www.norsys.com/


Table 2: Actual (i.e. observed) and predicted 
coral mortality for the 150 survey sites. 

 Predicted Coral 
Mortality 

Actual Predictive 
Rate 

(a) Low Med. High   

BBN1 26 7 3 Low 26/36=0.72 

 11 46 9 Med. 46/66=0.70 

 1 13 34 High 34/48=0.71 

(b) Low Med. High   

BBN2 13 18 5 Low 13/36=0.36 

 6 46 14 Med. 46/66=0.70 

 1 15 32 High 32/48=0.67 

(a) Node Sensitivity - High Dead Coral

0 0.1 0.2 0.3 0.4 0.5 0.6

habitat

cost100

community

max3day

bleach

Probability of High Dead Coral
 

Figure 5. Sensitivity of high dead coral cover to 
changes in the nodes of BBN1. 

 likelihood of including low impact sites. Of the 
other nodal variables, community provides the 
next highest level of influence, but it is 
considerably less influential (based on whole 
system performance) than the thermal stress 
information.  

max3day
HIGH
LOW
MEDIUM

   0
 100
   0

dead
HIGH
LOW
MEDIUM

9.04
52.1
38.9

bleach
HIGH
LOW
MEDIUM

15.7
54.3
30.0

cost100
HIGH
LOW
MEDIUM

17.6
65.0
17.4

Figure 6. BBN2 –predictive model of coral 
mortality, which includes ‘evidence’ nodes to 
describe only the thermal environment. 

Bayesian Belief network predictions 
The value of the developed BBN as a predictive 
decision support tool was also tested. We used the 
Netica runtime algorithm (Lauritzen and 
Spiegelhalter, 1988) to propagate the available 
evidence at each site. As shown in Table 2a, the 
identified BBN correctly assigns 106/150 sites 
(predictive rate 71%) to their actual observed 
coral mortality class – this compares favorably 
with 44% by “informed guessing”, i.e. guessing 
all reefs had medium mortality, and 33% by 
“blind guessing”. Essentially equal predictive 
ability was achieved for low, medium and high 
levels of coral mortality. 

identifying those sites which were observed to 
have low coral mortality, despite being in warm-
high heat stress conditions. Interestingly, of the 
15 occasions when low mortality was observed in 
conjunction with medium-high heat stress 
conditions, BBN1 was able to correctly predict 9 
of them. On the other hand BBN2 was unable to 
correctly predict any of them.  The result clearly 
highlights the potential for differential mortality 
responses to heating stress based on the resident 
community type. Demonstrating that many of the 
subtleties within the system are conditional 
responses; a property that is efficiently captured 
by BBN1. 

To test the predictive value of including the 
community node information, beyond that 
contained by the max3day node alone, we 
developed a new BBN in which the dead variable 
had no dependency on community (Fig. 6). The 
strengths of the remaining conditional linkages 
were then re-learnt from the original database. 
Surprisingly, as shown in Table 2b, for the new 
BBN, only 91/150 sites (predictive rate 61%) 
were correctly assigned. Interestingly, the 
majority of the loss in predictive capacity can be 
apportioned to the inability to correctly predict 
the low coral mortality class (36% compared with 
72% when the community node was included). 
This is significant, given that our ultimate 
objective is to correctly identify areas with low 
coral mortality potential. 

On further inspection, community type 3 (i.e. 
KM3) was found to be dominate when BBN1 
correctly predicted low mortality given medium-
high heat stress conditions. KM3 was a low 
diversity Acorpora/Faviid community of reef flats 
and shallow slopes. The result suggests that inter-
tidal or shallow sub-tidal reef flat sites -  by virtue 

With this objective in mind, we compared the 
predictive ability of the original (BBN1 – Fig. 4) 
and modified (BBN2 – Fig. 6) networks, in  



of shallow depth and periodic exposure to air 
during low tides – may be relatively more sun-
hardened and/or heat-hardened than reef slope 
sites. This result deserves further inspection and 
testing, as it suggests that community level 
adaptation (i.e. the favouring of certain suites of 
species) may be a potential adaptive response to 
future sea warming.  

This study is based on a relatively small survey 
sample. However, it is our belief that the 
‘information content’ of our ecological data sets 
has the potential to be strong due to the fact that 
the study locations were not just randomly 
selected but benefited from a process of informed 
selection (guided by satellite SST data) thereby 
targeting the thermal conditions of interest, and 
limiting redundancy in the data-set. Secondly, the 
employed dependency analysis algorithm (Cheng 
et al., 2002), benefited from being able to accept 
‘expert’ guidance on the initial structure; freeing 
the information content of the data to aid in the 
discovery of weaker dependency signals. 
Regardless of these facts, as with any modeling 
exercise, the work presented would benefit from 
evaluation against an independent data set. This is 
the subject of on-going research and will be 
reported elsewhere.  

3. DISCUSSION AND CONCLUSIONS 

In this paper, we have demonstrated how the 
Bayesian paradigm, and in particular the decision 
support capabilities provided by BBNs can help 
to bridge the growing disconnect between the 
outputs currently delivered by coral reef science 
and the requirements of management.  BBNs 
were shown to be able to accept all the essential 
elements of ‘understanding’ – data, information, 
and knowledge (even in the form of expert 
opinion) – and fuse them into a framework that is 
capable of delivering decision support in the form 
of prognostic evaluations of the likelihood of 
achieving specific outcomes or event states (in 
our case, bleaching and mortality status).  

This fusion capability provides an excellent 
vehicle for an interdisciplinary focus to problems, 
indeed in the development of our BBNs, we made 
use of the knowledge and information provided 
by ecologists, oceanographers, climatologists, 
bio-statisticians, and spatial analysts. Importantly, 
because uncertainty in particular inter-linkages is 
acknowledged in the conditional probabilistic 
statement of relationships, the decision support 
capability of the developed BBNs were not 
limited by the need to account for all mechanistic 
detail.  Indeed, by incorporating the ‘experience 
of past events’ as well as developed spatial 
relations, we allowed the level of descriptive 
complexity (i.e. dependency structure) to be 

‘learnt’ from the information content of the 
available data. The flexibility provided by BBNs 
also means that as new information becomes 
available, it is a trivial task for it to be 
incorporated, with only the conditional 
probabilities of the affected variables requiring re-
evaluation. For complex adaptive systems like 
coral ecosystems, this is important since we are 
continually going to experience ‘surprises’ in the 
magnitude (and potential type) of stress and 
recovery responses. But unlike methods that 
require us to continually throw away and start 
with a clean sheet, the BBN learning process 
allows us to adapt to those surprises or mistakes, 
which ultimately, we must expect to be our most 
valuable sources of information and experience. 

4. ACKNOWLEDGEMENTS 

The authors wish to thank R. Berkelmans, G. 
De’ath, S. Edgar, S. Kininmonth, M. Mahoney, C. 
Steinberg, E. Turak, and M. Wakeford, all from 
the Australian Institute of Marine Science, for 
their help in various aspects of this study.  

5. REFERENCES  
Berkelmans, R., Time-integrated thermal bleaching 

thresholds of reefs and their variation on the GBR, 
Mar Ecol Prog Ser, 229, 73-82, 2002. 

Berkelmans, R., De’ath, D., Kininmonth, S., and W., 
Skirving, Coral bleaching on the GBR: correlation 
with SST, and comparison of the 1998 and 2002 
event, Coral Reefs, in press, 2003. 

Cheng, J., Griener, R., Kelly, J., Bell, D., and W., Liu, 
Learning Bayesian networks from data: An 
information-theory based approach, Artificial 
Intelligence, 137, 43-90, 2002 

Clemen, R.T., Making hard decisions, Duxbury Press, 
Belmont California, 1996.  

Done, T., Patterns in the distribution of coral 
communities across the central GBR, Coral Reefs, 
1, 75-90, 1982. 

Done, T., and others, Testing bleaching resistance 
hypotheses for the 2002 GBR bleaching event. 
Published report prepared for The Nature 
Conservancy by the Australian Institute of Marine 
Science, 2003 

Hodges, J.S., Uncertainty, policy analysis, and 
statistics, J. Am. Stat. Assoc., 2, 259-291, 1987. 

Lauritzen, S., and D. Spiegelhalter, Local computations 
with probabilities on graphical structures and their 
application to expert systems, in J. Royal Statistics 
Society B, 50(2), 157-194, 1988. 

Pearl, J., Probabilistic reasoning in intelligent systems: 
Networks of plausible inference, Morgan 
Kaufmann Publishers, San Francisco, Calif, 1988. 


	INTRODUCTION
	CASE STUDY: IDENTIFYING CORAL REEFS WITH A LOW RISK-TO-BLEACHING
	Background
	The 2002 GBR Bleaching Data Sets
	Ecological characterization and bleaching impact assessments
	Heat Stress Characterisation of the thermal environment

	Results
	An exploratory Bayesian analysis
	Bayesian Belief network development
	Bayesian Belief network predictions


	DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

