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Abstract: The modelling of severe wind gust is a fundamental part of any wind hazard assessment. 
Statistical modelling approaches are usually used to describe the probability of occurrences of extreme 
winds. The classical extreme value theory based on the generalized extreme value (GEV) distribution and the 
more recently developed peaks over threshold (POT) and the use of generalized Pareto distribution (GPD) 
are investigated. Practical issues such as the threshold selection and model validation are also discussed. 
Severe wind gust models were developed for a number of locations in Perth. Estimates of 50 and 100 year 
return period events are compared with estimates published by the Standards Australia for Perth (Region A), 
which are based on a single site. For coast sites, the predicted wind gust speeds are similar to those published 
by the Standards, while the inland sites have smaller wind gust speeds. 
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1. INTRODUCTION 

Extreme wind is one of the major natural hazards 
experienced in Perth. These extreme winds are 
generally produced by cold fronts and not from 
cyclones. To predict the extreme wind with a 
given return period statistical analysis of wind 
records was used. 

Extreme value theory is a statistical technique for 
describing the unusual (extreme) rather than the 
usual events. This work quantifies the hazard 
components in a risk assessment of the Perth 
metropolitan area to winds that result in damage 
to buildings and infrastructures. These are the 
extreme winds of interest.  

 

2. EXTREME VALUE ANALYSIS 

The classical extreme value theory is based on the 
analysis of the largest (or smallest) value in an 
epoch. In wind engineering, an epoch is assumed 
to be a calendar year. The maximum yearly (3 
seconds) wind gust is used in the classical 
extreme value analysis. 

In the past twenty years, a new body of extreme 
value theory has been developed and is referred to 
as ‘peaks over threshold’ (POT) modelling. This 
theory allows for the use of all available data 
exceeding a sufficiently high threshold.  

A review of methods for calculating extreme 
wind speeds using extreme value techniques can 
be found in Palutikof et al. (1999). An 

introduction of extreme value theory can be found 
in Embrechts et al. (2001) and Colse (2001).  

 

2.1  Generalized Extreme Value Distribution 

The classical extreme value theory is based on 
three asymptotic extreme value distributions 
identified by Fisher and Tippett (1928). The 
Generalized Extreme Value (GEV) distribution 
introduced by Jenkinson (1955) combines the 
three distributions into a single mathematical 
form with the cumulative distribution function 
(CDF): 
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where ξ, σ and µ are the shape, scale and location 
parameter, respectively, and x is the maximum of 
an epoch. 

When ξ = 0, it is the Type I GEV or so called 
Gumbel distribution; when ξ < 0, the GEV is 
called the Type II (or Frechet) distribution, which 
has a right long tail; when ξ > 0, it is the Type III 
GEV (a form of the Weibull distribution) and has 
a short tail.  Type III GEV has a theoretical upper 
bound (µ+σ/ξ), that may be useful for estimates 
of extreme values (such as wind gust). Many 
scientists believe that due to physical and 
meteorological limitations, there is an upper 
bound to the maximum wind gust. 



 2.2  Peaks Over Threshold and Generalized 
Pareto Distribution 

A major criticism of traditional extreme value 
theory is that it only considers a single maximum 
within each epoch. This approach ignores other 
extreme events that may have occurred in each 
epoch. An alternative approach, often referred to 
as the peaks over threshold (POT) approach, is to 
consider all values greater than a given threshold 
value. Given a threshold u, the distribution of 
excess values of x over u is defined by: 
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which represents the probability that the value of 
x exceeds u by at most an amount y, where y = x – 
u. Balkema and de Haan (1974) and Pickands 
(1975) show that for a sufficiently high threshold, 
u, the distribution function of the excess, Fu(y), 
converges to the generalized Pareto distribution 
(GPD) which has a CDF given by: 
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When ξ = 0, the GPD corresponds to an 
exponential distribution (medium-size tail); when 
ξ < 0, it takes the form of the ordinary Pareto 
distribution (long tailed); when ξ > 0, it is known 
as a Pareto II type distribution (short tailed), 
which is also upper bounded by (µ+σ/ξ). 

The parameters of a GPD can be estimated with 
various methods such as the maximum likelihood 
(ML) method (see Davison, 1984) and probability 
weighted moments (PWM) method (see Hosking 
and Wallis, 1987). 

An important property of the GPD is that if ξ > 
−1, then the conditional mean exceedance (CME) 
over a threshold, u, is a linear function of u: 
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The linearity of the CME plot can thus be used as 
an indicator of the appropriateness of the GPD 
model. 

The shape and scale parameters of GPD may also 
be estimated using this property. Define the 
following sample mean excess (SME) function as, 
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with respect to the threshold u, where the ‘+’ sign 
ensures only the positive results of (Xi – u) will be 

taken into account. That is, the SME is the sum of 
the excesses over the threshold u divided by the 
number of data points which exceed u. The SME 
is an empirical estimate of the CME and ξ and σ 
of the GPD can be determined by the slope and 
intercept of the SME plot, using the following 
equations. 
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2.3  Original Data Fitting 

From (2) and the fact that Fu(y) converges to G(x) 
when u is large, we have the following equation 
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which can be re-arranged as 
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Given a threshold u, the Fn(u) can be estimated 
using (n – Nu)/n, where n is the sample size and 
Nu is the number of exceedances. In the case of    
ξ ≠ 0, (9) can be simplified to 
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where x > u.  

It can be seen that (10) is also a GPD with 
parameters (ξ,σ’,µ’) where  
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and ξ and σ are the fitted GPD parameters to x– u, 
where x > u, using the POT method. 

 

2.4  Return Period 

When the threshold is chosen sufficiently large, it 
is assumed that the number of exceedances Nu 
(where u is the threshold) has an approximate 
Poisson distribution with parameter λ (the rate of 
exceedances per year, also called the crossing 
rate). Hence λT is the number of exceedances in T 
years. Let λU be the number of events exceeding a 
very high level U. That is, 

      { } ))(1(Pr UFTUXTU −=>⋅= λλλ .   (13) 



Assume UT is the event with the largest value in T 
years, and by definition 1=

TUλ  (i.e. it only 
happens once in T years).  

Now 
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where  is the inverse of the CDF of the 
GPD (or the GEV). For GPD, the crossing rate λ 
can be estimated by N

)(1 ⋅−F

u/Tdata, where Tdata is the 
number of years for which data has been 
recorded. For GEV, the crossing rate λ has the 
value 1 if the yearly maximum is used, or 12 if 
the monthly maximum is used. 

 

2.5  Quantile Estimation 

The quantile estimate for GEV can be obtained by 
inverting (1) and using (16): 
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For GPD, the quantile estimate is obtained by 
inverting (3): 
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where σ’ and µ’ are given in (11) and (12).  

 

2.6  Threshold Selection 

The threshold should be set high enough so that 
the exceedances approximate Poisson arrival rate. 
Otherwise the distribution of selected extremes 
may not converge to the GPD. However, the 
threshold must be low enough to ensure there is 
enough data points left for satisfactory 
determination of the GPD parameters. 

There are techniques available that may assist in 
the selection of an optimal threshold. One 
approach is to use the SME plots defined in (5). If 
the data is from a GPD, its CME would be linear 
with respect to u (see (4)). Hence, an appropriate 

threshold can be chosen by selecting the lowest 
value above which the SME graph is 
approximately a straight line. 

 

2.7  Model Validation 

An important question when considering any 
numerical model of a complex physical process is 
the reliability and appropriateness of the chosen 
model. Graphical methods are commonly used in 
model validation. Two popular methods involve 
plotting CDF and quantile-quantile plot (QQ-
plot). 

A CDF plot of the fitted GPD and the empirical 
distribution derived from the data will show the 
degree of GPD fitting towards the data.  

The QQ-plot is a convenient visual diagnostic 
tool to examine whether a sample comes from a 
specific distribution. Specifically, the quantiles of 
an empirical distribution are plotted against the 
quantiles of a hypothesized distribution, in our 
case, the fitted GPD. If the sample (data) comes 
from the GPD, the QQ-plot will approximate a 
straight line. 

Confidence intervals of the distribution 
parameters and return levels are also an indicator 
of the quality and appropriateness of the selected 
model. In general, smaller confidence intervals 
indicate a better model fit compared to the larger 
ones. A method of estimating confidence intervals 
using profile likelihood techniques has been 
described in Coles (2001). 

 

2.8  Procedure For POT Method 

The following procedure summarises the POT 
method step by step: 

• Set up a threshold u assisted by SME plots; 

• Fit the GPD parameters ξ, σ, µ using the data 
exceeding u (i.e. x− u); 

• Verify the model using the CDF plot and the 
QQ-plot of the exceedances GPD and the 
empirical distribution (of exceedances); 

• Calculate the overall fitted tail GPD 
parameters (ξ,σ’,µ’) for all data using (11) 
and (12); 

• Verify the overall model using CDF plot of 
the overall fitted tail GPD and the empirical 
distribution (of all data); 

• Estimate quantiles using (18) with the overall 
fitted parameters (ξ,σ’,µ’). 

 



3. PERTH SEVERE WIND MODELLING 

Six years of wind gust data from an automatic 
weather station (AWS) at Gooseberry Hill in 
Perth was used to demonstrate the techniques. 

The GEV and GPD analyses were done by using 
WAFO (2000). WAFO is a MATLAB toolbox for 
analysis of random waves and loads, which has a 
sub-toolbox of extreme value analysis. 

 

3.1  The GEV approach 

The yearly maxima data contained only 5 values 
from each of the 5 completed record years. It is 
not appropriate to fit the GEV model to this 
limited data and consequently the GEV model is 
fitted to the maximum monthly values. The fitted 
GEV model uses parameters estimated using the 
methods of maximum likelihood (ML) and 
probability weighted moments (PWM) are plotted 
against the recorded monthly maximum wind 
gusts in . Figure 1

Figure 1. Gooseberry Hill − CDF plot of monthly 
maximum gust (steps) and fitted GEVs using ML 

and PWM. 

 

 

 

Figure 2. Gooseberry Hill − Return periods and levels. 

Figure 2

The predicted maximum wind gusts 
corresponding to various return periods have been 
plotted in . There is a slight difference 
between the GEV model fitted by different 
parameter estimating methods. In , the 
estimated 50 and 100 year return levels are drawn 
with the monthly maximum gust. The predicted 
return levels can be compared visually with the 
historical records. 

Figure 3

Figure 3. Gooseberry Hill – Time series plot of 
monthly maximum gust with estimated 50 and 

100 year return levels indicated. 

 

 

 

3.2  The POT approach 

Before attempting the POT analysis an 
appropriate threshold value was determined using 
the SME plot defined by (5) (Figure 4). The SME 
is approximately constant (Figure 4) when u ≥ 
20m/s. Consequently, a threshold of 20 m/s has 
been chosen. There are 325 daily maximum wind 
gusts that exceed 20 m/s and these were used to 
estimate the GPD parameters. This is 
approximately 4 times as many data points 
compared with the GEV’s case. 

 

Figure 4. Gooseberry Hill – SME plot versus 
threshold.  



 

Figure 5. Gooseberry Hill – CDF plot of 
exceedances (steps) versus fitted GPD using 

exceedances with u=20m/s. 

Figure 5

 

Figure 6. Gooseberry Hill – CDF plot of all daily 
gust versus overall fitted tail GPD model. 

Figure 6

 

Figure 7. Gooseberry Hill – QQ-plot of 
exceedances and the fitted GPD with u = 20 m/s. 

Figure 7

 

The CDF plots of exceedances and the fitted GPD 
using exceedances are shown in . The 
whole record and the overall fitted tail (larger 
than 20 m/s) GPD are shown in . Both 
figures show a very good fit using both methods 

(ML and PWM). The QQ-plot also suggests that 
both models fit the available data with the 
quantiles generally plotting as a straight line 
except one point ( ). The return level plot 
is shown in  together with the empirical 
return levels (the dots) which suggested a good fit 
from the GPD models. The time series of daily 
gust is plotted in F  with estimated 50 and 
100 year level gusts shown.  

Figure 8

Figure 8. Gooseberry Hill – Return periods 
versus return levels. 

igure 9

 

 

Figure 9. Gooseberry Hill – Time series plot with 
50 and 100 year return level gusts indicated. 

 

3.3  Results for Other AWS sites 

The modelling of severe wind gust at up to six 
other AWS locations has also been carried out by 
fitting the yearly (or monthly) maximum gust by 
the GEV and the daily gust by the GPD. The 
initial estimates are shown in Table 1. It can be 
seen that the return levels estimated from the 
GEV are slightly larger than the ones from the 
GPD. Most of the shape parameters fitted were 
positive in both the GEV and GPD cases, which 
indicate that they are from Type III distributions. 
This result is consistent with a study of extreme 
wind modelling in the US (Lechner et al., 1992). 



The return wind levels for Region A (including 
Perth) have recently been published by Standards 
Australia (AS/NZS 1170.2, 2002). These are 
based on a single site, the Perth Airport and may 
not be representative of the Perth area. These are 
also included in Table 1. It can be seen that all the 
inland sites have a return wind speed smaller than 
those recommended in the Standard. However, all 
the three coast sites (Ocean Reef, Rottnest Is and 
Swanbourne) have return wind speeds close to the 
Standard with one exception at Swanbourne, 
which is slightly larger. The data from 
Swanbourne may need further investigation 
because the GEV model fitted using the yearly 
maximum gust was different to the ones fitted by 
the monthly maximum gust and their shape 
parameters have different signs. 

Table 1. Estimated 50 and 100 year return levels 
(rounded to the nearest 1 m/s) for the AWS sites in Perth. 

By GEV By GPDAWS site Data 
period1 50y 100y 50y 100y

Airport 44-02 35m/s 36m/s 33m/s 35m/s
Gooseberry 95-02 35m/s 36m/s 33m/s 35m/s

Jandakot 89-02 35m/s 36m/s 33m/s 34m/s
Ocean Reef 86-02 39m/s 40m/s 38m/s 39m/s

Pearce 67-02 36m/s 38m/s 33m/s 35m/s
Rottnest Is 84-02 39m/s 40m/s 38m/s 39m/s

Swanbourne 86-02 40m/s 41m/s 39m/s 41m/s
Wind Standard  39m/s 41m/s 39m/s 41m/s

 

4.    CONCLUSIONS 

Extreme value analysis has been carried out on 
daily wind gust data recorded in Perth using the 
GEV and GPD analyses. Results show that at 
coastal sites the predicted wind gust speeds are 
similar to these published by Standards Australia 
for Perth (Region A). However, all the inland 
sites studied have smaller wind gust speeds than 
the ones published by Standards Australia. 

The future damages to building and 
infrastructures caused by those predicted return 
period winds can be estimated using a wind 
damage model that is calibrated by the historical 
storm damage. 
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