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Abstract: Artificial neural networks (ANNs) have been used increasingly in recent years for the prediction
and forecasting of complex hydrological relationships. ANNs have been seen as an attractive alternative to
process based modelling approaches, as they are able to extract an underlying relationship from the data
when knowledge of the physical process is lacking. However, spurious correlations in the data can often lead
to the incorrect underlying relationship being modelled and therefore care should be taken not to treat ANNs
as black boxes, where data are input into the model and an output is generated with no knowledge gained on
how the prediction was determined. It is essential that the mechanisms being modelled by the network are
examined in order to provide some measure of confidence regarding the prediction. In this paper a number of
investigations are carried out, using a synthetically generated data set, in order to assess the importance of
extracting underlying relationships from trained ANNs. The results show that rule extraction techniques
provide better information regarding the “correctness” of an ANN than conventional validation measures
such as RMSE. Additionally, the methods proposed in this paper enable a comparison of the optimisation
capabilities of different training algorithms. A comparison of a local search method (the backpropagation

algorithm) and a global search method (the shuffled complex evolution algorithm) is presented.
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1. INTRODUCTION

Artificial neural networks (ANNs) have been used
increasingly in recent years for the prediction and
forecasting of complex hydrological relationships,
including rainfall-runoff modelling, streamflow
forecasting and prediction of water quality
(ASCE, 2000; Maier and Dandy, 2000). As
opposed to conventional modelling approaches,
ANNSs do not require an in depth knowledge of
the driving processes, nor do they require the
form of the model to be specified a priori.
Therefore, they are often viewed as an appealing
alternative when knowledge of the processes
driving the hydrological phenomena is lacking.
ANNSs are able to extract a relationship between
model inputs and outputs to provide quick and
reasonably accurate predictions with a relatively
minimum data requirement.

Despite these advantages, ANNs have frequently
been criticised for operating as a “black box”
(ASCE, 2000). An ANN is essentially a tool for
the nonlinear mapping of inputs to outputs, where
the primary purpose is to provide a prediction of
system response rather than to gain an
understanding of the causal interactions that
generate the hydrological occurrence. A trained

network does not provide any insight into how the
prediction was determined and therefore cannot
provide any measure of confidence regarding the
prediction.

ANNgE, like all data driven modelling approaches,
are reliant on the quality and quantity of the data.
If there are a large number of uncertainties
associated with the data, as is often the case with
measurements of environmental variables, or if
the calibration data do not adequately represent
the population of possible measurements, an
ANN may not be capable of accurately estimating
the underlying interactions that occur within the
system. If some information regarding the
modelled mechanics can be extracted from the
network, an evaluation of the ANN can be carried
out by comparing prior knowledge of actual
physical processes with the relationships
modelled by the network.

If ANNs are to become more widely accepted and
reach their full potential as prediction models in
hydrological modelling studies, some explanation
capability is required. This paper presents the
application of a rule extraction procedure in order
to examine the advantages of rule extraction in
ANN modelling.



2. METHODS

The connection weights (free parameters) within
an ANN provide the links between the inputs and
outputs. Therefore, the relative contributions of
the input variables in predicting the output are
dependent on the magnitude and direction of the
connection weights. An input will have a positive
impact on the output if the input-hidden and
hidden-output weights are of the same sign (i.e.
both positive or both negative), whereas an input
will have an inhibitory effect on the output if the
signs of the input-hidden and hidden-output
weights are opposite. Inputs can be identified as
interacting with one another if the weights
entering the same hidden node are of opposing
signs.

Garson (1991) proposed a method for making use
of the information contained in the network
weights to determine the relative importance of
each network input in predicting the output.
However, this measure does not indicate the
statistical significance of an input. Olden and
Jackson (2002) proposed a randomisation method,
incorporating Garson’s algorithm, to statistically
assess the contribution of inputs in the network.
This method may be used to eliminate
connections whose weights do not significantly
influence the network output, thereby illuminating
the significant interactions being modelled.

The methods used to gain information on network
mechanics may be used to extract new rules
regarding the physical processes of a system.
However, the network needs to be globally
optimised if the rules learnt are to reflect the true
processes.  Consequently the  optimisation
algorithm used also needs careful consideration.

2.1. Garson’s Algorithm

Garson’s measure of relative importance (Garson,
1991) uses the products of input-hidden and
hidden-output connection weights to calculate the
relative importance of each input variable. In the
following explanation of Garson’s algorithm the
network weights are represented by w;;, where i is
the node from which information is being passed
and j is the node where the information is
received.

Referring to Figure 1, the contribution of each
input node to the output via each hidden node can
be calculated as follows:
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From these values the relative contribution of
each input node to the outgoing signal of each
hidden node can be calculated by, for example:
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The relative importance of each input variable is
then determined by:
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Figure 1. Example ANN structure

In this study the equations used in Garson’s
algorithm were modified such that the relative
importance of hidden nodes could also be
determined as follows:
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Because Garson’s algorithm uses absolute values
of input-hidden and hidden-output connection
weights, it does not take into account the direction
of the relationship between input and output
variables. The use of absolute values can lead to
misinterpretation of input importance. For
example, input 1 may have a positive effect on the
output through hidden node A, but an inhibitory
effect on the output through hidden node B, and
therefore the counteracting signs should act to
diminish the overall importance of the input.
However, Garson’s algorithm only takes into
account the absolute values of these effects,
resulting in an increased rather than reduced
overall importance.



2.2. Randomisation Approach

As Garson’s measure of relative importance can
be misleading, the randomisation procedure
introduced by Olden and Jackson (2002) uses an
additional measure to assess the importance of
network inputs, namely the overall connection
weight as defined below. A variation of Olden
and Jackson's (2002) randomisation procedure
was carried out in this study, where the overall
connection weights were used to assess the
importance of inputs and the modified version of
Garson’s algorithm was used to assess the relative
importance of hidden nodes. The approach was
carried out as follows:

1. construct an ANN using original input and
output data with randomly generated initial
weights;

2. train the network and calculate and record:

(a) input-hidden-output node connection
weights: the product of input-hidden and
hidden-output connection weights, e.g
1.4 (see Garson’s algorithm);

(b) overall connection weight: the sum of
the input-hidden and hidden-output
connection weight products for each
input variable, e.g. C; =cj o + ¢ p;

(c) relative importance of each hidden node
as calculated by (4), e.g. RIny;

3. randomly permute the original target
variable;

4. construct an ANN using the randomised
targets;

5. repeat steps 2, 3 and 4 a large number of
times.

In this approach the network targets are randomly
shuffled to remove any structure between the
inputs and targets. When the network is trained
the resulting weight vector represents the case
when there is no relationship between inputs and
outputs and only spurious correlations are
modelled. If the overall connection weight of an
input, C;, is greater than 95% of the randomised
overall connection weights for the same input
then the input can be considered to be significant
with a 95% confidence level. The significance of
a hidden node, j, may be determined in a similar
way by comparing the relative importance of the
node, Rln;, to the 95t percentile randomised
value. If inputs or hidden nodes are found to be
insignificant they will subsequently be pruned
from the network. This process can be repeated
until only significant inputs and hidden nodes
remain.

2.3. Network Training

Network “training” is the process of iteratively
adjusting the connection weights such that a
predetermined objective function is minimised
and the best fit of the model predictions to the
observed data is obtained. It can be compared to
the calibration of a mathematical model.

The nonlinear characteristics of ANNs lead to the
existence of multiple optima on the solution
surface. However, there is currently no training
algorithm that can guarantee the global optimal
solution as opposed to converging on a local
minima. Local or global optimisation algorithms
may be used to train an ANN. Backpropagation, a
first order local method, is currently the most
widely used algorithm for optimising feedforward
ANNs (Maier and Dandy, 2000). This algorithm
is based on the method of steepest descent, where
the network weights are updated according to:

Wil = Wy + Yndn (5)

where w is the vector of connection weights, v is
the step size and d is a vector defining the
direction of descent. This algorithm is an effective
way of optimising weights, however, like all local
search methods, it is susceptible to becoming
trapped in local minima in the error surface.
Global methods have the ability to escape local
minima as they employ random search techniques
to allow the simultaneous search for an optimum
solution in several directions. They are often more
computationally intensive than local search
techniques, but with improving computer
technologies, the use of global optimisation
methods is increasing. Duan et al. (1992)
developed the shuffled complex evolution (SCE)
algorithm that uses multiple “simplexes”, started
from random locations in the search space, to
direct the search towards the global optimum. At
periodic stages of the search, the points in the
simplexes are shuffled together to ensure that
information is shared and that each simplex is not
conducting an independent search of the global
optimum.

Comparisons of the abilities of different training
algorithms to find the global optima are generally
based on the closeness of fit between predicted
and observed outputs. However, there may be
many combinations of network weights that will
result in similar network performance. When
applied to test cases with known relationships,
rule extraction algorithms should aid in the
comparison of optimisation techniques as they are
able to determine whether the training algorithm
used has adequately estimated the correct
underlying function rather than merely generated
good fitting results.



3. CASE STUDY

3.1. Data

Autoregressive (AR) models are commonly used
to model hydrological time series data. The
autoregressive model, AR(9), given by (6), was
used to generate a set of synthetic time series data
which were, in turn, used to demonstrate the
importance of rule extraction. This model was
selected as it depends on more than one input
variable and has known dependence attributes.

X; = 0.3%x¢1 - 0.6Xc4 - 0.5X9 + & (6)

In the above equation ¢, is a normally distributed
random noise component with mean of 0 and
standard deviation of 1. The use of synthetic data
enables the capabilities of the proposed method to
be investigated without the complication of other
sources of error, such as insufficient data, or the
omission of significant inputs.

3.2. Investigations

An ANN was constructed to predict the above
model. Although the model output only depends
on inputs X, X¢4 and X.o, 15 inputs from x. to
X.15 were included in the ANN. The network
included 1 hidden layer with 5 hidden layer nodes
as a starting point.

Assessment of Randomisation Procedure

The randomisation approach described in
Section 2.2 was carried out in order to determine
which inputs and hidden nodes made a significant
contribution to the prediction of x, and therefore,
find the optimal network structure for modelling
the AR(9) process.

The success of the randomisation approach relies
upon the network’s ability to converge on a (near)
global minimum of the objective function rather
than a local minima, as the connection weights of
a network that has converged on a local minimum
will differ from those that have globally
converged. The backpropagation algorithm
(Rumelhart et al., 1986) including momentum,
and the shuffled complex evolution (SCE) method
(Duan et al., 1992) were used for training the
ANN so as to compare the success of the
randomisation approach using each search
method.

Comparison of Training Algorithms in
Estimating the Underlying Relationship
The rule extraction algorithms were used to
compare the relative predictive capabilities of the
two training algorithms employed. The overall
connection weights between input and output

variables were examined to determine how
accurate each training algorithm was in estimating
the correct underlying relationship.

The ability to handle noisy data is one of the
benefits of ANNs. The networks were trained on
data generated by (6), which includes a random
noise component, and the performance of each
training algorithm was assessed in its ability to
model the correct underlying relationship in the
presence of noise. In order to do this a second
data set was generated by (6), however this set did
not include the random noise component.
Performance measures given in the following
sections are based on a comparison of the network
output with this noise-free data set.

Predictive Performance

Generally, noisy observations must be relied upon
to assess the predictive performance of an ANN.
When data are noisy, performance measures such
as the RMSE between predictions and
observations may be misleading when trying to
interpret how well the model fits the underlying
function. If unnecessary inputs are included in the
ANN, spurious correlations in the data may be
modelled, resulting in an improved RMSE,
however the incorrect underlying relationship will
be inferred.

Two network structures, obtained during different
stages of the randomisation procedure using the
SCE algorithm, were compared in order to
determine whether the use of an error measure
such as the RMSE is sufficient to ascertain which
network provides the best generalisation ability
and therefore best predictive performance when
presented with new data.

4. RESULTS & DISCUSSION

4.1. Determination of Significant Inputs and
Hidden Nodes

The randomisation procedure for determining
significant inputs and hidden layer nodes was
iterative, where the ANN had to be retrained
whenever inputs or hidden nodes were pruned
from the network.

The results of the procedure are presented in
Table 1, where the “optimal” network resulting
from each training algorithm is presented in terms
of the inputs determined to be significant, the
number of hidden nodes and the RMSE between
the predictions and the noise-free data set.



Table 1. Resulting “optimal” networks.

Backpropagation

SCE

Significant Inputs
No. of hidden nodes
RMSE

Xi-15 Xt-45 Xt9
0
0.125

Xi-15 Xt-45 Xt-9
0
0.100

The randomisation procedure was able to
correctly identify which inputs were significant in
predicting the output when each of the training
algorithms were used. The model given by (6) is a
linear process and therefore the most optimal
network structure is that containing no hidden
nodes. This was also correctly identified by the
randomisation procedure.

It took 4 iterations to achieve the final network
described in Table 1 using the SCE algorithm,
whereas it took 7 iterations using the
backpropagation algorithm. Therefore, it may be
considered that the randomisation procedure is
able to determine the optimal network structure
more efficiently when used with the SCE
algorithm. Additionally, the RMSE obtained by
the backpropagation algorithm is slightly higher
than that achieved with the SCE algorithm,
although this may be a function of the stopping
criterion used in each case.

4.2. Estimation of Underlying Relationship

Table 2 gives a comparison of the actual weights
associated with each driving input and the overall
connection weights in the “optimal” networks
determined by the randomisation process using
the alternative training algorithms. The error
measure given in Table 2 was calculated by:

3 4

?:1 (Ci B Ai )2

3 (6)

where C; is the overall connection weight of input
i and 4; is the actual weight for input i.

Table 2. Overall connection weights of
“significant” inputs.

Input Actual  Backpropagation SCE
1 0.3 0.27 0.31
4 -0.6 -0.69 -0.68
9 -0.5 -0.57 -0.56
Error 0.065 0.057

It can be seen that each training algorithm was
able to estimate the AR(9) model with good
accuracy, especially considering that the training
data contained added noise and a nonlinear
activation function was used. The resulting
network trained by the SCE algorithm was
slightly more accurate than the network trained by
backpropagation. ~However, as mentioned
previously, this may be due to the stopping
criteria used. The fact that the SCE algorithm was
able to predict the underlying relationship with
slightly more accuracy is also evidenced by
comparing the output plots of the two networks as
shown in Figure 2.

Predictive Performance

The results of two networks trained by the SCE
algorithm were compared in terms of their overall
connection weights and the RMSE between their
outputs and the target data with added noise. The
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SCE Output

2 - Backprop Output
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Figure 2. Plot of outputs from ANN with correct inputs and optimal structure, as determined by the
backpropagation and SCE algorithms.



first network has the optimal network structure as
determined by the randomisation process (after 4
iterations). This network has 3 inputs and no
hidden nodes. The second network is that
obtained after only one iteration of the
randomisation procedure and contains 15 inputs
and 2 hidden nodes.

Table 3. Results of two different network
structures.

Overall Connection Weight
Input | Actual 3 inputsz,ggshidden 15 inplrlltsagshidden
X1 0.3 0.315 0.871
X2 - - 0.469
X3 - - -0.319
Xid -0.6 -0.680 -1.344
X5 - - 0.191
Xi6 - - -0.246
X7 - - -0.244
Xi.8 - - -0.388
X9 -0.5 -0.555 -0.987
X410 - - -0.322
Xe11 - - 0.318
Xe12 - - 3.498
Xe13 - - 3.530
Xe14 - - -0.210
X5 - - 0.354
RMSE - 0.544 0.542

The second network has incorrectly estimated the
underlying relationship, as 12 unnecessary inputs
were included in the model. Particular importance
was given to inputs X.;, and x.j;3 when in fact
they that were not required for the predictions.
Also, the inclusion of 2 hidden nodes indicates
that a nonlinear relationship has been estimated
even though the actual model is linear. However,
the RMSE of the second network is slightly less
than that of the first network which may
incorrectly suggest that the second network is an
improvement over the first. By inspecting a plot
of outputs from each of the networks it was
indeterminable which structure was better able to
model the actual AR(9) series as the outputs of
each network were almost overlaying one
another.

5. CONCLUSIONS

The selection of important inputs and appropriate
network geometry significantly affect the

predictive performance of an ANN, however
neither is a trivial task. It was shown that rule
extraction methods can be extremely beneficial in
achieving an optimal model structure and that the
randomisation procedure developed by Olden and
Jackson (2002) is suitable for this process. The
SCE algorithm displayed more efficiency in
optimising the case study model. However, even
in the presence of noise, it was demonstrated that
both the backpropagation and SCE algorithms
were able to represent the driving process with
relative precision.

It was also demonstrated that the use of an error
measure, such as the RMSE, is insufficient for
assessing how well the underlying process is
represented by the model when calibrated with
noisy data. By using information obtained from
the network weights a better assessment could be
made as to how well the model had estimated the
underlying function. With this capacity it is
possible make predictions with greater confidence
when new data are presented to ANNS.

6. REFERENCES

ASCE Task Committee on Application of
Artificial ~ Neural = Networks in
Hydrology. Artificial neural networks in
hydrology. I:  Preliminary concepts,
Journal of Hydrologic Engineering,
ASCE, 5(2), 115-123, 2000.

Duan, Q., S. Sorooshian, and V. K. Gupta.
Effective and efficient global
optimisation for conceptual rainfall-
runoff models, Water Resources
Research, 28(4), 1015-1031, 1992.

Garson, G. D. Interpreting neural-network
connection weights, Artificial
Intelligence Expert, 6,47-51, 1991.

Maier, H. R., and G. C. Dandy. Neural networks
for the prediction and forecasting of
water resources variables: a review of
modelling issues and applications,
Environmental Modelling and Sofiware,
15, 101-124, 2000.

Olden, J. D., and D. A. Jackson. Illuminating the
"black box": a randomisation approach
for understanding variable contributions
in artificial neural networks, Ecological
Modelling, 154, 135-150, 2002.

Rumelhart, D. E., J. L. McLelland, and PDP
Research Group. Parallel distributed
processing, explorations in the micro
structure  of  cognition, Vol. 1:
Foundations, MIT Press, Cambridge,
Massachusetts, 1986.



	INTRODUCTION
	METHODS
	Garson’s Algorithm
	Randomisation Approach
	Network Training

	CASE STUDY
	Data
	Investigations
	Assessment of Randomisation Procedure
	Comparison of Training Algorithms in Estimating the Underlying Relationship
	Predictive Performance


	RESULTS & DISCUSSION
	Determination of Significant Inputs and Hidden Nodes
	Estimation of Underlying Relationship
	Predictive Performance


	CONCLUSIONS
	REFERENCES

