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Abstract: With the wide range of models available, hydrologic modellers are faced with the choice of which 
model is best applied to a catchment for a particular modelling exercise. Assessing the relative performance 
of competing models can be difficult given the limited data that is available and further complicated by 
difficulties in obtaining a unique set of values for the model parameters. Traditional techniques such as those 
involving split-sample validation are useful, but suffer from increased uncertainty due to the reduction of the 
sample used. Bayesian statistical inference, with computations carried out via Markov Chain Monte Carlo 
(MCMC) methods, offer an efficient alternative allowing for the combination of any pre-existing knowledge 
about individual models and their respective parameters with the available catchment data to assess the 
parameter uncertainty. Bayesian inference can also provide a framework to evaluate the evidence in favour of 
a model, given a group of competing models. The traditional approach requires calculation of the Bayes 
factor, which is the posterior probability ratio of the models (assuming equal prior probabilities). The aim of 
this study is to present a method by which hydrological models may be compared in a Bayesian framework. 
The study builds on previous work in which the parameters of the Australian Water Balance Model (AWBM) 
were estimated using computations carried out via MCMC methods. The study considers the variability of 
soil moisture within the Bass River catchment, by formulating the AWBM to include a different number of 
soil moisture stores. A model selection framework is developed by calculating Bayes factors using a method 
based on direct estimation of a models’ marginal likelihood. The framework uses an adaptive Metropolis 
algorithm to calculate the model’s posterior odds. To assess the model selection method in a controlled 
setting, artificial runoff data were created corresponding to the two storage model. These data were used to 
check if the method would select the 2 store model convincingly. The method was then applied to real 
catchment data to determine which model configuration best represents the catchment. 

Keywords: Bayes Factor; Hydrological Modelling; Markov chain Monte Carlo; Australian Water Balance 
Model. 

1. INTRODUCTION 

A challenge that faces the practicing hydrologist is 
that there isn’t a catchment model that will perform 
accurately over the wide range of conditions that 
exist. A modeller must choose the most appropriate 
model from a number of competing models. 
Typically, models may be compared using classical 
assessment criteria (such as the mean square model 
error or AIC). However, difficulties in obtaining 
unique and accurate parameter values can mean that 
assessing the performance of models is problematic. 

Bayesian inference provides an approach to model 
comparison that overcomes the difficulties of 
traditional methods. The uncertainty about the 
parameter values for a model is ascertained by 
combining any pre-existing knowledge about the 
model variables with available data to obtain a 
distribution on the parameter space (the posterior 
distribution) summarizing parameter uncertainty. In 
comparing two models, the traditional approach 

requires calculation of the Bayes factor, which is 
the posterior probability ratio of the models 
(assuming equal prior probabilities). 

2. BAYESIAN MODEL COMPARISON 
THEORY  

Traditional comparison of hydrological models has 
proceeded by splitting available catchment data, 
and calibration/validation of the model using the 
split data samples. Models may be assessed 
according to a range of criterion or via traditional 
hypothesis testing. Methods based on hypothesis 
testing generally require models to be nested, 
which is rarely the case in hydrological modelling. 
In addition, comparison of models can often be 
hindered by the uncertainty surrounding model 
parameters. This uncertainty often arises due to 
lack of model identifiability, limited data or over-
parameterization. This is of particular importance 
when considering hydrological modelling and the 



frequent lack of data in comparison to the ever 
increasing model complexity. 

Bayesian theory provides an ideal solution to these 
limitations. Bayesian methods consider model 
uncertainty when comparing model performance by 
describing model and parameter uncertainty 
probabilistically. Methods based on Bayes factors are 
flexible and simple. Many models may be compared 
without a change in the method, and there is no limit 
on the model structure (models are not required to be 
nested). Bayesian methods also allow prior 
knowledge about the models being considered to be 
taken into account. The results are not solely reliant 
on information from the available data, but enable 
specialist and pre-existing knowledge to inform the 
results. Bayesian model selection methods are also 
natural Ockham’s razors (Berger and Pericchi, 2001), 
favouring simpler models automatically. 

2.1. Bayes Factors 

The most widely used Bayesian method of model 
comparison is the Bayes factor. The Bayes factor is 
the posterior probability ratio of the models, 
assuming equal prior probabilities. Say we wish to 
choose a model from the set of models 
M={M1,…Mn}, given data y for implementing the 
model. Let p(Mi) be the a priori probability set for 
model Mi, and θi be the set of uncertain model 
parameters corresponding to model Mi.  The 
traditional approach to Bayesian model selection 
proceeds by pairwise comparison of the models 
through their posterior probability ratio:  
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 is the model’s marginal likelihood. The 

second term on the right hand side of Equation (1) is 
known as the Bayes factor. The difficulty in 
calculating Bayes factors largely lies in estimation of 
the marginal likelihood of the model. The marginal 
likelihood can rarely be obtained analytically. The 
densities  are defined through an integral 
over the parameter space, which must usually be 
estimated numerically, typically using specialized 
numerical methods such as Markov chain Monte 
Carlo (MCMC).   
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2.2. Problems in Computing Bayes Factors 

The direct calculation of Bayes factors can be 
difficult. MCMC methods have been successfully 
implemented to sample model and parameter space, 
but in high dimensional models the tuning of such 
MCMC schemes to get appropriate mixing can be 
difficult. Alternatively, methods based on separate 

MCMC runs for each model have been developed 
(Chib and Jeliazkov, 2001).   

The marginal probability is estimated using Bayes’ 
theorem as a function of the parameter posterior 
distribution evaluated at optimal parameter values. 
Estimating the Bayes factor using a traditional 
Bayesian approach would involve first formulating 
the parameter’s posterior distribution, then 
estimating the optimal parameter values and then 
evaluating the marginal probability m(y|M). If 
MCMC methods are used, this would involve 
generating traces twice – first to estimate the 
parameter posterior distribution and associated 
optimal parameter values, and then to estimate the 
marginal probability given the identified optimal 
parameters.  The algorithm proposed in the next 
section reduces some of the difficulties associated 
with this calculation. 

Bayes factors require specification of prior 
distributions for all parameters in the models 
considered. This can be an advantage, as it provides 
a way in which other information may be taken into 
account in the model. However, for many models it 
may be hard to set meaningful priors for all model 
parameters. As model dimension grows, the task 
becomes more demanding. Estimation of the Bayes 
factor tends to be sensitive to the choice of prior 
(Kass and Raftery, 1995) and difficulties can be 
encountered when using improper priors.  

3. METHODOLOGY 

3.1. Estimation of Models’ Marginal 
Likelihood 

To overcome the problems associated with prerun 
tuning and computational effort in computing 
Bayes factors, Chib and Jeliazkov (2001) provide a 
MCMC framework for estimating the marginal 
likelihood of a model by integrating over the 
parameter space. The marginal likelihood is the 
normalizing constant of the model’s posterior 
density, and (using the notation defined previously) 
can be written as: 
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is the likelihood or error function, 
|( Mθπ is the prior density and ),|( Myθπ is the 

posterior density of the model parameters. The 
problem with using MCMC methods for 
calculating the marginal likelihood is that the 
method obtains draws from the posterior 
distribution, whereas the marginal likelihood is 
obtained by integrating the likelihood function with 
respect to the prior.  Chib and Jeliazkov have 
devised a method in the context of MCMC methods 
by relating the marginal likelihood to the posterior 



density calculated at a single point. By taking logs, 
the above identity at some value θ* is obtained as: 
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 (3) where ε is a small value simply to ensure  does 
not become singular; and s

tC

d is a scaling parameter 
to ensure reasonable acceptance rates of the 
proposed states. 

From this, the marginal likelihood can be found by 
estimating the log posterior ordinate, log ),|*( Myθπ . 
Chib and Jeliazkov’s method for estimating the 
posterior ordinate uses the sampled parameter values 
from the MCMC process. Thus little further 
computation is required than that to obtain samples 
from the model parameters’ posterior distributions. 

The adaptive Metropolis algorithm is flexible and 
computationally straightforward. It is easily 
implemented in models of high dimension. The use 
of the parameters’ covariance matrix ensures 
reasonable acceptance rates between highly 
correlated and interdependent parameters (which 
are often prevalent in conceptual rainfall-runoff 
models). 

Evaluation of the models’ marginal likelihood first 
requires an estimate of the value θ*, where the 
posterior density of the model parameters is 
maximized. Then, the aim of the exercise is to 
estimate the posterior density at θ*. By integrating 
over the parameter space, an estimate of this 
posterior ordinate is obtainable as: 

3.3. Algorithm for Sampling the Marginal 
Likelihood 

The adaptive Metropolis algorithm was used to 
obtain the posterior distributions for parameters in 
all the models considered. Initially, a full run of 
100,000 iterations was performed to obtain the 
approximate parameter values with maximum 
posterior density. Using the method provided by 
Gelman and Rubin (1992) it was determined that 
convergence was obtained after 20,000 iterations.  
Based on this, after a warm up run of 30,000 
iterations the covariance was kept fixed (rather than 
updated at each iteration) and this fixed covariance 
was used to obtain 70,000 further draws from the 
posterior distributions. Estimation of the model’s 
marginal likelihood then proceeded as: 
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where (for g = 1…K) are draws from the 
posterior distribution generated via the adaptive 
Metropolis algorithm (outlined below); are 
draws from 

)(gθ

)( jθ
)|*,( yq θθ , the proposal density for the 

transition from the fixed parameter value θ* to θ; 
and )|*, y( θθα is the acceptance probability for a 
transition from θ to θ*.The benefits of the method lie 
in its flexibility and relative computational ease. The 
method can be applied to high dimensional models, 
of any structure for which a suitable MCMC 
sampling algorithm can be devised.  

1. For g = 1,…, K (where K = 50,000 for our 
study) 
• Sample θ(g) from the posterior distribution 

(using the adaptive Metropolis algorithm). 
• Calculate , the probability of 

accepting the move from θ
)|*,( )( yg θθα

(g) to θ*. 3.2. Adaptive Metropolis Algorithm 
• Calculate , the proposal 

density at θ
)|*,( )( yq g θθ

(g). The adaptive Metropolis algorithm (Haario et al. 
2001) is a variation on the conventional Metropolis 
algorithm. The adaptive algorithm is characterised by 
a multivariate normal proposal distribution, with 
mean at the current parameter value. The proposal 
covariance matrix is calculated at each iteration 
based on the covariance matrix of the parameter 
values in the parameter chain to that point. In this 
way, the proposal distribution is updated using the 
knowledge learnt so far about the posterior 
distribution. At iteration t, Haario et al. (2001) 
consider a multivariate normal proposal ( )tt CN ,θ  
where  is the proposal covariance.  tC

2. For j = 1,…, J (where J=50,000 for our study) 
• Sample θ(j) from q(θ*,.θ|y) (given the 

fixed  θ*). 
• Calculate , the probability of 

accepting the move from θ* to θ
)|*,( )( yjθθα

(j). 

3. Calculate the posterior ordinate using (4), and 
substitute into the marginal likelihood identity 
(3) 

4. To compare models, estimate the model’s 
posterior odds ratio using (1). 

For an initial period t0,  (where C  is some 
arbitrary initial covariance). After this initial period 
the proposal covariance is based on the estimated 
posterior covariance of the parameters:   

0CCt = 0



4. CASE STUDY: AUSTRALIAN WATER 
BALANCE MODEL AND THE BASS 
RIVER WATERSHED 

Two different forms of the likelihood function were 
used to estimate the posterior distributions. The 
first assumed normally, independently and 
identically distributed data. The second assumed 
heteroscedastic, correlated error terms by applying 
a Box Cox transformation and fitting an 
autoregressive (order 4) error model. For each 
AWBM structure, both likelihood functions were 
considered, giving a total of 6 different models to 
be considered. It would be expected for 
hydrological models of this type that the 
assumption of normally, independently and 
identically distributed data would not be 
appropriate, considering the dominance of low or 
zero flows. The soil moisture accounting method 
by which the daily flow is calculated indicates that 
the assumption of correlated error terms would be 
more appropriate. The extent of the likely 
superiority of the likelihood with correlated errors 
is not known. This study yields a measure of this 
superiority. 

The selected study area was the Bass River 
watershed, a 52 km2 catchment located at Loch in the 
South Gippsland Basin on the western slopes of the 
Strzelecki Ranges. Data was available in the form of 
daily rainfall, evapotranspiration and runoff data, 
over a period of eleven years.  

4.1. Model Selected for Comparison 

The study builds on previous work in which the 
parameters of the Australian Water Balance Model 
(AWBM) were estimated using computations carried 
out via Markov chain Monte Carlo methods (Bates 
and Campbell 2001). The AWBM (Figure 1) is an 
eight parameter saturation overland flow model that 
was developed by Boughton (1993) to compute daily 
runoff from daily rainfall and evapotranspiration 
records. The model consists of three surface storages 
that are associated with three fractional areas to 
represent the variability of moisture capacity over the 
catchment. In a catchment, the surface storage 
capacity can vary considerably over the catchment 
area. The use of three surface storages to represent 
the catchment variability may not be appropriate for 
a specific catchment. In this study, a method is used 
to consider the variability of soil moisture over the 
Bass River catchment by formulating the model to 
vary the number of surface storages. In addition to 
the traditional model (Figure 1) in which three 
surface stores represent the variability of soil 
moisture capacity, the model was formulated to 
include a total of two or four surface stores. 

4.2. Prior Distributions 

At this stage, priors are specified based on our 
knowledge and experience in working with the 
model variables. Where there is little prior 
knowledge, priors should be flat in the region 
where the likelihood is large, so their impact on the 
Bayes factor  is small (Kass and Raftery 1995). 
Priors were chosen in reference to those used by 
Bates and Campbell (2001). Further work will 
examine the results of the study if non-informative 
or conditional priors are assumed.  

4.3. Approach Taken 

Two sets of data were used in the study. To assess 
the model selection method in a controlled setting, 
artificial runoff data were created corresponding to 
the two storage model and then used to check if the 
method would select the 2 store model. The method 
was then applied to real catchment runoff data to 
determine which model configuration best 
represents the catchment. 
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The Bayesian information criterion (BIC) is an 
asymptotic approximation to the marginal 
likelihood. To confirm the results obtained from 
our MCMC scheme, the BIC was calculated for 
each model.  

5. RESULTS: SIMULATED DATA STUDY 

To obtain the 2 storage synthetic data, the Bass 
River rainfall data was used to simulate runoff with 
the AWBM. A Box-Cox transform was applied and 
a normally distributed random error term added. 
Considering the transformed data, the 2, 3 and 4 
storage models were compared using a likelihood 
function that assumed heteroscedastic, correlated 

Figure 1. Australian Water Balance Model 



error terms. The resulting estimated marginal 
likelihood and BIC are given in Table 1.  

Table 1: Results Using Simulated Data  

Model Log Marginal 
Likelihood 

BIC 

2 Storage Model 4730 4710 
3 Storage Model 4053 3992 
4 Storage Model 3131 4233 

6. RESULTS: BASS RIVER CATCHMENT 
DATA 

Using the real runoff data from the Bass River 
catchment, the 6 main models were compared to 
determine the relative benefits of modeling the data 
errors as heteroscedastic and correlated, and to 
examine the effect of assuming a different number of 
partial areas for runoff. The resulting estimated 
marginal likelihood and BIC of each model are given 
in Table 2. 

Table 2: Results Using Bass River Data  

Model Marginal 
Log-
likelihood 

BIC 

2 Storage Model, 
Independent Errors 

-6821 -6774 

3 Storage Model, 
Independent Errors 

-6649 -6590 

4 Storage Model, 
Independent Errors 

-6633 -6566 

2 Storage Model, 
Correlated Errors 

-602 -535 

3 Storage Model, 
Correlated Errors 

-491 -410 

4 Storage Model, 
Correlated Errors 

-413 -403 

7. DISCUSSION 

7.1. Comparison of Results from Simulations 

The above marginal log likelihoods show that the 
models with correlated error functions and 
transformed flow overwhelmingly outperform the 
models that assume independent errors. This reflects 
that the assumption of normally distributed, 
independent errors is not appropriate. The data shows 
a dominance of low and zero flows with fewer high 
runoff events, meaning that normally distributed 
errors are not likely. The results show the benefit of 
applying a transformation to the data. Similarly, the 
soil moisture accounting method within the model 
means that errors are likely to be correlated in time.  

Within each likelihood group, the 4 storage models 
perform better than the 3 and 2 storage models. (The 
extent of difference in the marginal likelihood 
between the models means that calculating the 

pairwise Bayes factors is redundant).  It would be 
likely that introduction of further storages could 
improve the model results. Over-parameterization 
is a continual problem in model selection and 
model fitting. Bayesian methods naturally penalize 
model complexity (Berger and Pericchi, 2001), 
which helps to avoid this problem. 

7.2. Bayes Factors and the Benefit of Bayesian 
Model Selection 

Bayesian versus non-Bayesian Selection Methods 
A frequent issue in applying hydrological models is 
the paucity of data for many catchments. This lack 
of current, error-free and complete data means that 
parameters in models can be poorly identified. A 
single, unique set of values for models can be 
difficult, if not impossible, to obtain. One way in 
which to handle these issues is to account for the 
uncertainty about the model parameters when 
comparing models. Bayesian methods 
automatically account for both model and 
parameter uncertainty. 

As mentioned, Bayesian methods favour simpler 
models, by naturally penalizing model complexity. 
With limited data available for many catchments, 
models with simpler parameterization should yield 
accurate results, and will be less complicated to 
implement. However, with growing computing 
power, there is a trend to develop increasingly 
complex models that allow the modeller to address 
the numerous dynamics within a catchment. The 
problem that lies in using complex models is that of 
poor parameter identifiability. Bayesian methods 
naturally account for these problems by favouring 
less complex models. 

Bayesian methods also provide a way of 
incorporating other information. Criterion based 
methods don’t allow prior choice to be taken into 
account when comparing models. By specifying the 
prior model probability, Bayes factors provide a 
way of including any specialist knowledge.  

Finally, the method of comparing models via their 
posterior probabilities is flexible and simple. It 
allows many models to be compared without a 
change in method. There are no limits on the types 
of models being selected, and it is not necessary to 
use standard distributions. 

Evaluation of Chib/Jeliazkov Method 
The widespread use of Bayes factors has been 
hindered by the computational difficulties in 
accurately calculating the marginal likelihood of a 
model. In rare cases it is possible to determine the 
marginal likelihood analytically. In lower 
dimensional models, it may be possible to use 
ordinary Monte Carlo simulation. However, 
methods can become complicated in higher 



dimensional models. One of the main benefits of the 
methodology proposed by Chib and Jeliazkov (2001) 
lies in its flexibility and wide applicability. It can be 
used for high dimensional models and for comparing 
models of different dimension or structure. Little 
extra computational effort and programming is 
necessary than that required for a full MCMC run for 
sampling from the posterior. 

Any concerns with the method are due to the issues 
generally associated with applying any MCMC 
techniques. It can be difficult to implement MCMC 
methods for complex or high dimensional models. Of 
particular importance is the rate of mixing and 
efficiency of the method in sampling the posterior. 
The convergence to the posterior distribution should 
also be considered. How to determine when to stop 
sampling from the posterior is a critical issue to those 
implementing MCMC schemes, and should be 
considered in this method of calculation of the 
marginal likelihood. 

Why Not Bayes Factors? Problems in Successful 
Implementation of Bayes Factors 
The sensitivity of results to the choice of prior for 
parameters is an important issue in calculating Bayes 
factors. It can often be difficult to specify meaningful 
priors for all model parameters. When estimating 
posterior distributions, vague priors are chosen to 
limit the effect on resulting posterior distributions 
given enough data. In testing models, the Bayes 
factor tends to be more sensitive to the choice of 
priors than in estimating posteriors (Kass and 
Raftery, 1995). Non-informative priors are also 
problematic in comparing posterior probabilities. In 
addition, Bayesian methods require specification of 
priors on all parameters for each model and this can 
be difficult when considering many high dimensional 
models.  

Bayesian methods rely on the use of probability 
models for prior distributions and in specification of 
a likelihood function. This can affect results when 
estimating Bayes factors, and all assumptions should 
be checked. 

8. CONCLUSIONS 

When using a hydrological model it can be difficult 
to choose from the variety of models that exist. The 
range available to the practicing hydrologist means 
that choosing the best model, depending on the aim 
of the modelling exercise, is a complex task. This 
difficulty can be amplified by the uncertainty 
surrounding the parameters of the model. 

Bayesian methods can provide an ideal means to 
compare competing models whilst allowing for 
model uncertainty. In comparing two models, the 
Bayes factor may be calculated, which is the 
posterior probability ratio of the models (assuming 
equal prior probabilities). Calculation of Bayes 

factors is complicated by the computational effort 
required, particularly for high dimensional models. 
Chib and Jeliazkov (2001) have provided an ideal 
solution that uses the sampled values from an 
MCMC chain to calculate the marginal likelihood. 

Assessment of hydrological models in a Bayesian 
setting has been hindered by model complexity and 
parameter interaction. This has led to difficulty in 
developing MCMC regimes that may be applied to 
models of different structure, size and constraints. 
The method provided here is easily implemented. 
Calculation of the marginal likelihood is 
straightforward and computationally undemanding 
when a MCMC scheme is available. When 
combined with the flexible adaptive Metropolis 
algorithm the method described offers a powerful 
framework for Bayesian model comparison.  

In this study, the method was applied to investigate 
the effects of using a different number of surface 
storages to represent partial area runoff. The 
AWBM was reformulated to consider 2, 3 or 4 
surface storages. Two different likelihood models 
were considered for the data. The results showed 
that data from the Bass River catchment was better 
modelled as having heteroscedastic, time correlated 
errors. The best model assumed 4 surface storages. 
The methodology was confirmed by simulating 
data from the 2 storage model and ensuring that the 
corresponding model was selected. 
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