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Abstract: The univariate Generalised Autoregressive Conditional Heterscedasticity (GARCH) model has successfully 
captured the symmetric conditional volatility in a wide range of time series financial returns. Although multivariate 
effects across assets can be captured through modelling the conditional correlations, the univariate GARCH model has 
two important restrictions in that it: (1) does not accommodate the asymmetric effects of positive and negative shocks; 
and (2) assumes independence between conditional volatilities across different assets and/or markets. In order to capture 
such asymmetric effects, Glosten et al. (1993) proposed a univariate asymmetric GARCH (or GJR) model. However, 
the univariate GJR model also assumes independence between conditional volatilities across different assets and/or 
markets. Several multivariate GARCH models have been proposed to capture such interdependencies, but none has 
been designed to capture asymmetry, apart from the constant correlation multivariate asymmetric GARCH (CC-MGJR) 
model of Hoti et al. (2002). The CC-MGJR model captures asymmetric effects and permits interdependencies between 
conditional volatilities across different assets and/or markets. In addition, the structural and statistical properties of the 
CC-MGJR model have been established, and the sufficient conditions for consistency and asymptotic normality can be 
verified in practice. The aim of this paper is to model the multivariate asymmetric conditional volatility of three 
different stock indexes, namely S&P 500, Nikkei and Hang Sang, using the CC-MGARCH model of Bollerslev (1990), 
the vector ARMA-GARCH model of Ling and McAleer (2003), and the CC-MGJR model of Hoti et al. (2002). 
Extensive empirical results support the presence of asymmetric effects across the stock indexes, as well as 
interdependencies in conditional volatilities across different markets.  
 
Keywords: Multivariate GARCH, asymmetry, multivariate volatility models, conditional correlation, interdependence, 

structural properties, statistical properties. 
 
1. INTRODUCTION  
 
Engle’s (1982) Autoregressive Conditional 
Heteroscedasticity (ARCH) and Bollerslev’s (1986) 
Generalised ARCH (GARCH) models have been used 
extensively in the finance and financial econometrics 
literature to capture the dynamics of conditional 
volatility in financial returns (see Bollerslev, Chou and 
Kroner (1992), Bollerslev, Engle and Nelson (1994) and 
Li, Ling and McAleer (2002) for details). It is well 
known that the GARCH model can accommodate 
several unique features that occur frequently in financial 
returns data, such as the ability to capture thick tails and 
volatility clustering. However, GARCH is also well 
known for two major deficiencies. Both ARCH and 
GARCH assume symmetric impacts of the 
unconditional shocks, so that a positive shock has the 
same impact on volatility as a negative shock. This 
restriction contradicts one of the stylised facts of 
financial returns, in which negative shocks tend to have 
larger impacts on volatility than do positive shocks. The 
(G)ARCH model is also a univariate model and does 
not permit interdependencies across different assets 
and/or markets. Thus, GARCH does not test for a 
relationship between the volatilities of different assets 
and/or markets, which is of primary importance in areas 
such as optimal portfolio management.  
 
Previous research has tried to resolve these deficiencies 
with some success. Glosten et al. (1992) (GJR) 
proposed a univariate asymmetric GARCH model to 
accommodate the asymmetric impacts of unconditional 
shocks on volatility. Bollerslev (1990) proposed a 

constant correlation multivariate GARCH (CC-
MGARCH) model, but without establishing its 
structural or statistical properties. Ling and McAleer 
(2003) proposed a vector ARMA-GARCH model which 
has the CC-MGARCH as a special case. In addition, 
Ling and McAleer (2003) established the structural and 
statistical properties of the model, including the 
necessary and sufficient conditions for stationarity and 
ergodicity, as well as sufficient conditions for the 
existence of moments, and sufficient conditions for 
consistency and asymptotic normality of the Quasi 
Maximum Likelihood Estimator (QMLE) for the vector 
ARMA-GARCH model (see Li, Ling and McAleer 
(2002) for a comprehensive survey of recent theoretical 
developments of univariate GARCH models). 
Moreover, the vector ARMA-GARCH model allows 
interdependencies of volatilities across different assets 
and/or markets. As QMLE is consistent and 
asymptotically normal, valid inferences can be obtained 
to determine the existence of cross-asset, cross-market 
and cross-country effects. 
 
Interestingly, these models have resolved one deficiency 
or the other of the GARCH model, but not both. For this 
reason, Hoti et al. (2002) proposed a constant 
correlation multivariate GJR (CC-MGJR) model. This 
model differentiates the asymmetric impacts of positive 
shocks and negative shocks, and also allows 
interdependencies between different assets and/or 
markets in the conditional mean, as well as in the 
conditional volatilities. As in Ling and McAleer (2003), 
Hoti et al. (2002) also established the necessary and 
sufficient conditions for stationarity and ergodicity, as 



well as sufficient conditions for the existence of 
moments, and sufficient conditions for consistency and 
asymptotic normality of the QMLE for the CC-MGJR 
model. Thus, valid inferences can be conducted to 
determine the presence of asymmetric and/or 
interdependent effects.  
 
The purpose of this paper is to evaluate three 
multivariate GARCH models, namely CC-MGARCH, 
vector ARMA-GARCH and CC-MGJR, using three 
data sets, namely the returns of Standard and Poor’s 500 
Composite Index, Nikkei and Hang Sang. The empirical 
results show that there are interdependencies across 
different markets, and the presence of asymmetric 
impacts from unconditional shocks is also detected. 
Conditional correlation matrices are estimated for the 
three models, and their stability is investigated through 
the use of rolling windows. The impacts of extreme 
observations and outliers on the conditional correlation 
matrices are also analysed.  
 
The plan of the paper is as follows. Section 2 reviews 
the three multivariate models and describes the data 
used in the paper. Section 3 contains the empirical 
results. Concluding remarks are given in Section 4.   
 
2. MODELS AND DATA 
 
Consider the following multivariate GARCH model: 
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where Ft  is the past information available up to time t, 
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As )( 000 ttE ηη ′=Γ , the correlation matrix of the 

unconditional shocks, t0ε  is, by definition, the same as 

the correlation matrix of the conditional shocks, t0η . 
Bollerslev (1990) proposed the above framework with  
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where , and m is the total number of assets 
or markets. Equation (2) is essentially a standard 
GARCH(r,s) model for asset i, in which ∑ denotes 

short run persistence (or ARCH effects) and 

denotes long run persistence (in which 

 are the GARCH effects). Although the 

conditional correlation is modelled, and hence can be 
estimated in practice, the CC-MGARCH model does not 
allow any interdependencies of volatilities across 
different assets and/or markets, and does not 
accommodate asymmetric behaviour. 
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In order to allow for interdependencies of volatilities 
across different assets and/or markets, Ling and 
McAleer (2003) proposed the following vector ARMA-
GARCH model:  
 

Φ0(L)(Yt − µ 0 )= Ψ0(L )ε0t               (3) 
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where ,  and  are )( 2/1

00 itt hdiagD = lA0 lB0 mm×  

matrices with typical elements ij0α  and , 
respectively, for i

ij0β

mj ,...,1, = , Φ0(L)= 01LIm−Φ − ...−Φ0pL
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and  are polynomials in L, and q
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It is clear that when  and  are diagonal matrices, 
equation (4) reduces to equation (2), so that the vector 
ARMA-GARCH model has CC-MGARCH as a special 
case. Ling and McAleer (2003) established the structural 
and statistical properties of the model, including the 
necessary and sufficient conditions for stationarity and 
ergodicity, sufficient conditions for the existence of 
moments, and sufficient conditions for consistency and 
asymptotic normality of the QMLE for the model.  

lA0 lB0

 
Hoti et al. (2002) extended the vector ARMA-GARCH 
model of Ling and McAleer (2003) to accommodate the 
asymmetric impacts of the unconditional shocks on the 
conditional variances. They proposed the CC-MGJR 
model as follows:  
 

Φ0(L)(Yt − µ 0 )= Ψ0(L )ε0t                (5) 
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where  is an lC0 mm×  matrix with typical element 

, and )( 0itI η  is an indicator function, given as: 
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It is clear that if 1=m , equation (6) reduces to the 
asymmetric GARCH, or GJR, model of Glosten et al. 
(1992). If 00 =lC , equations (5) and (6) collapse to the 
vector ARMA-GARCH model of Ling and McAleer 



(2003). Hoti et al. (2002) established the structural and 
statistical properties of the CC-MGJR model. As in to 
Ling and McAleer (2003), this includes the necessary 
and sufficient conditions for stationarity and ergodicity, 
sufficient conditions for the existence of moments, and 
sufficient conditions of consistency and asymptotic 
normality of the QMLE for CC-MGJR. Hoti et al. (2002) 
also provided a concise summary and comparison of 
various multivariate GARCH models, including Engle 
and Kroner’s (1995) Vech (or VAR) model, Bollerslev, 
Engle and Wooldridge’s (1988) Diagonal model, Engle 
and Kroner’s (1995) BEKK model, and the Dynamic 
Conditional Correlation (DCC) model of Engle (2002), 
which is equivalent to the Varying Correlation 
Multivariate GARCH (VC-MGARCH) model of Tse and 
Tsui (2002). The structural and statistical theory for the 
DCC and VC-MGARCH models have not yet been 
established, which means there is no foundation for 
statistical inference.  
 
Multivariate GARCH models are typically estimated by 
MLE, and are defined as follows:  
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where A  denotes the determinant of matrix . When A

t0η  does not follow a joint normal distribution, equation 
(8) is defined as the Quasi-MLE (QMLE). The properties 
of the QMLE for the vector ARMA-GARCH and CC-
MGJR models can be found in Ling and McAleer (2003) 
and Hoti et al. (2002), respectively.  
 
The primary purpose of this paper is to investigate the 
interdependent effects of volatilities across different 
markets. As discussed in Section 2, the three multivariate 
models, namely CC-MGARCH, vector ARMA-GARCH 
and CC-MGJR, will be estimated using three daily data 
sets, namely Standard and Poor’s 500 Composite (S&P), 
Nikkei (NK) and Hang Sang (HS). The data were 
obtained through DataStream DataBase Services, with 
the sample from 1/1/1986 to 11/4/2000, giving 3726 
observations.  
 
Of primary interest are the returns from each of these 
series, which are calculated as 11 )( −−−= tttt yyy

tr
r , 

where  denotes the stock price at time t, and  
denotes the corresponding return at time t. In the next 
section, the CC-MGARCH, vector ARMA-GARCH and 
CC-MGJR models will be estimated using the returns 
from S&P, Nikkei and Hang Sang. Tests of cross-country 
and asymmetric effects will be conducted, and the 
stability of the conditional correlation matrices will be 
examined through the use of rolling windows.  

ty

 
3.  EMPIRICAL RESULTS 
 
Tables 1 to 3 contain the estimates for CC-MGARCH, 
vector ARMA-GARCH and CC-MGJR, respectively. 
The three entries corresponding to each parameter are the 

respective estimate, asymptotic t-ratio and the Bollerslev-
Wooldridge (1992) robust t-ratio. In addition, the 
conditional correlation matrices of CC-MGARCH, 
vector ARMA-GARCH and CC-MGJR are given in 
Table 4. Finally, Table 5 contains a summary regarding 
the cross-markets effects on volatilities implied by these 
models. All the models in this paper are estimated by 
EViews 4 with 0,1 == qp  and .  1== sr
 
Hoti et al. (2002) showed that the QMLE for CC-MGJR 
is asymptotically normal, which facilitates statistical 
inference. Similar results hold for the vector ARMA-
GARCH and CC-MGARCH models, as they are special 
cases of CC-MGJR (see Ling and McAleer (2003) and 
Hoti et al. (2002) for further details).  
 
The significance of the iγ  estimates for i HNS ,,= , 

where =S S&P, =N Nikkei and =H Hang Sang, in 
CC-MGJR in Table 3 suggests the presence of 
asymmetric impacts from the unconditional shocks on 
the volatilities in all three markets. Therefore, the CC-
MGJR model is preferred to the vector ARMA-GARCH 
and CC-MGARCH models. Furthermore, the results in 
Table 3 also suggest the presence of cross-markets 
effects. In fact, the results show that the conditional 
volatility of S&P is affected by its previous short and 
long run shocks (namely, 

SSα γ
2
1

+  and 
SS βγ ++

2
1

Sα , 

respectively), as well as the previous long run shocks 
from Nikkei (namely, 

NNN βγ +α +
2
1 ). Interestingly, the 

conditional volatility of Nikkei returns is also 
significantly affected by its own previous short and long 
run shocks, and previous long run shocks from S&P, as 
well as the short and long shocks from Hang Sang. In 
the case of Hang Sang, the conditional volatility is 
affected by its previous short and long run shocks, and 
previous long run shocks from Nikkei. The conditional 
volatilities of Hang Sang and S&P returns do not seem 
to affect each other, even though they are both affected 
by Nikkei. 
 
It is worth noting that the vector ARMA-GARCH 
model revealed the same cross-country effects as did 
CC-MGJR. Moreover, the estimates of the 
corresponding parameters between the two models do 
not differ substantially, but their absolute magnitudes 
are generally lower in CC-MGJR, with no change in 
sign. In addition, the Bollerslev-Wooldridge (1992) 
robust t-ratios are lower than the asymptotic t-ratios for 
all the estimates in the three models.  
 
As in Hoti et al. (2002), the conditional correlation 
matrices of the three models do not seem to differ 
substantially. It is worth noting that CC-MGJR produces 
the lowest correlations compared with the other two 
models. Interestingly, the correlations between the 
conditional shocks are all positive in the three cases. 
S&P and Hang Sang, (SP, HS), has the highest 
correlation of 0.315, and the correlation between S&P 
and Nikkei, (SP, NK), is second with 0.259, followed 
closely by the correlation of 0.255 between Hang Sang 



and Nikkei, (HS, NK). Although the conditional 
correlations differ slightly from the other two matrices, 
the rankings remain the same.  
 
Recently, Engle (2002) and Tse and Tsui (2002) 
proposed the multivariate GARCH model with time-
varying conditional correlations, such that Γ  is no 
longer a constant matrix but follows a GARCH-type 
process. However, no structural or statistical properties 
of these models have yet been developed. The primary 
difficulty lies in the fact that  is the conditional 

correlation matrix of 

0

0Γ

t0η , which is assumed to be a 
vector of independently and identically distributed 
random variables. If  is assumed to be time varying 
with an autoregressive structure, the iid assumption of 

0Γ

t0η  would be violated, so that any existing proofs of 
consistency and asymptotic normality would not be 
valid for these models.  
 
In order to examine the time-varying nature of the 
conditional correlations, as well as investigating the 
effects of extreme observations and outliers on the 
conditional correlations of CC-MGARCH, vector 
ARMA-GARCH and CC-MGJR, all three models also 
are estimated using rolling windows. The dynamic paths 
of the condition correlations of each model should 
provide insights to two important issues, namely: (i) 
variations in the conditional correlations fluctuate over 
time; and (ii) the impacts of aberrant observations on 
the conditional correlations. In order to strike a balance 
between efficiency in estimation and a sensible number 
of rolling windows, the rolling windows size is selected 
to be 3000 for all three data sets.  
 
Figures 1-3 contain the dynamic paths of the conditional 
correlation matrices for CC-MGARCH, vector ARMA-
GARCH and CC-MGJR, respectively. The conditional 
correlations of (SP, NK) and (NK, HS) seem to have 
upward trends for all three models. In addition, the 
conditional correlation of (NK, HS) seems to be rising 
the most rapidly. Interestingly, although the conditional 
correlation of (SP, NK) seems to be slightly higher than 
(NK, HS) when using the whole sample for all three 
models, the rolling windows show that there are, in fact, 
regime changes in all three cases. The conditional 
correlation of (SP, NK) seems to be much higher than 
for (NK, HS) in the early rolling samples, and remains 
at a similar level throughout the entire sample, but the 
conditional correlation of (NK, HS) rises rapidly, and 
eventually exceeds the conditional correlation of (SP, 
NK).  
 
An interesting question arises when the conditional 
correlation of (NK, HS) becomes consistently higher 
than for (SP, NK) for each model. For CC-MGJR and 
vector ARMA-GARCH, the conditional correlation of 
(SP, NK) becomes consistently lower than for (NK, HS) 
in rolling samples 173 and 183, respectively. However, 
the conditional correlation of (SP, NK) does not become 
consistently lower than for (NK, HS) until much later, 

specifically in rolling sample 338. This may be due to 
the misspecification of the conditional volatilities, and 
would be an interesting area for future research.  
 
Another interesting observation is the dramatic decline 
in the conditional correlation of (SP, NK) when the 
outlier in observation 466 is removed from the rolling 
sample. The conditional correlation of (SP, NK) in CC-
MGARCH decreases from 0.254 to 0.239 in five 
consecutive rolling samples, then stabilises at around 
0.238 for the remaining rolling samples. A similar 
explanation holds for the vector ARMA-GARCH 
model, where the conditional correlation of (SP, NK) 
decreases from 0.247 to 0.235 in six consecutive rolling 
samples, then stabilises at around 0.234. Interestingly, 
the conditional correlation of (SP, NK) does not 
decrease as dramatically in CC-MGJR, as it decreases 
from 0.243 to 0.229 in nine consecutive rolling samples, 
and remains at around 0.229. It would appear, therefore, 
that accommodating asymmetric behaviour leads to 
more robust inferences.  
 
 
4.  CONCLUDING REMARKS 
 
This paper analysed the cross-markets and asymmetric 
effects of conditional volatilities in the returns of the 
S&P 500 Composite Index, Nikkei and Hang Sang 
using three different multivariate GARCH models, 
namely the CC-MGARCH model of Bollerslev (1990), 
the vector ARMA-GARCH model of Ling and McAleer 
(2003), and the asymmetric CC-MGJR model of Hoti et 
al. (2002). The empirical results showed that there are 
interdependencies of volatilities between S&P and 
Nikkei, and between Hang Sang and Nikkei, but no 
interdependencies in the conditional volatilities between 
S&P and Hang Sang. The time-varying nature of 
conditional correlations was examined through the use 
of rolling windows. These empirical results showed that 
the conditional correlations do not vary substantially for 
(SP, NK) and (SP, HS), but exhibit a slight upward 
trend in the correlations of (NK, HS). Models that allow 
time-varying conditional correlations may provide 
greater information about the underlying structures of 
the processes, even though the structural and statistical 
theory for these models have yet to be established for 
purposes of valid inference.  
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Table 1. CC-MGARCH Estimates 

Returns iω  iα  iβ  
S&P 500 1.25E-06 0.077 0.914 

 7.536 34.436 228.828 
 3.123 2.356 32.540 

Nikkei 2.88E-06 0.140 0.861 
 7.813 36.025 173.436 
 3.177 3.405 27.153 

Hang Sang 7.29E-06 0.150 0.838 
 14.653 24.675 126.609 
 2.970 4.656 39.008 

Notes: 1. The three entries for each parameter are their respective estimate, the 
asymptotic t-ratio and the Bollerslev-Wooldridge (1992) robust t-ratio. 

2. The index i  denotes .,, HNSi =   
 

Table 2. Vector ARMA-GARCH Estimates 
 

Returns ω  Sα  Sβ  Nα  Nβ  Hα  Hβ  
S&P 500 1.64E-06 0.062 0.927 0.005 -0.007 0.004 -0.004 

 9.970 22.189 242.639 4.161 -5.382 6.227 -6.568 
 3.203 2.539 41.343 1.758 -2.209 1.436 -1.438 

Nikkei 2.52E-06 0.025 -0.026 0.089 0.900 0.014 -0.010 
 9.174 5.484 -7.647 15.586 161.004 9.610 -8.384 
 4.526 1.501 -2.442 6.253 61.487 2.025 -2.412 

Hang Sang 8.51E-06 0.068 -0.056 0.022 -0.023 0.116 0.856 
 11.958 13.207 -4.883 4.707 -5.209 17.066 125.353 
 3.528 0.934 -1.134 1.600 -2.138 5.738 43.054 



Notes: 1. The three entries for each parameter are their respective estimate, the asymptotic t-ratio and 
the Bollerslev-Wooldridge (1992) robust t-ratio. 

2. The parameters in equation (4) associated with S&P, Nikkei and Hang Sang Returns are 
denoted by subscripts S, N and H, respectively.  

Table 3. CC-MGJR Estimates 
 

Returns ω  Sα  Sγ  Sβ  Nα  Nγ  Nβ  Hα  Hγ  Hβ  
S&P 500 2.19E-06 0.019 0.090 0.919 0.005  -0.007 0.002  -0.002 

 13.167 2.874 12.226 205.506 3.684  -4.938 4.281  -4.744 
 3.736 1.943 2.876 55.831 1.682  -2.286 1.069  -1.082 

Nikkei 2.89E-06 0.027  -0.026 0.024 0.132 0.898 0.011  -0.008 
 9.369 5.841  -6.948 4.792 12.352 157.551 6.722  -7.106 
 5.870 1.663  -2.768 2.238 5.741 72.871 2.019  -2.535 

Hang Sang 9.09E-06 0.054  -0.031 0.022  -0.021 0.052 0.141 0.842 
 11.849 9.149  -2.410 4.546  -4.392 6.322 10.839 115.188 
 3.695 0.758  -0.608 1.641  -2.032 3.154 4.242 43.060 

Notes 1. The three entries for each parameter are their respective estimate, the asymptotic t-ratio and the Bollerslev-
Wooldridge (1992) robust t-ratio. 

2. The parameters in equation (6) associated with S&P, Nikkei and Hang Sang Returns are denoted by subscripts S, 
N and H, respectively.  

 
 

Table 4. Conditional Correlations for CC-MGARCH, Vector ARMA-GARCH and CC-MGJR 
 

Returns S&P 500 Nikkei Hang Sang 
S&P 500 1.000 0.272 (0.263) [ 0.259] 0.316 (0.319) [0.315] 
Nikkei  1.000 0.256 (0.262) [0.255] 

Hang Sang   1.000 
Note: The three conditional correlation entries correspond to CC-MGARCH, (Vector ARMA-GARCH) and [CC-MGJR], 

respectively.  
 
 

Table 5. Summary of Cross-Markets Effect 
 

Relationships Interpretation  
SN ↔  Interdependent effects between Nikkei and S&P 500 
NH ↔  Interdependent effects between Hang Sang and Nikkei 
φ=∩ SH  Independent effects between Hang Sang and S&P 500 

 

 
 
 

Figure 1. Dynamic Paths of 
Conditional Correlations for CC-
MGARCH 
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Figure 2. Dynamic Paths of 
Conditional Correlations for Vector 
ARMA-GARCH 
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Figure 3. Dynamic of Conditional 
Correlations for CC-MGJR 
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