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Abstract: Non-linear time series models, especially regime-switching models, have become increasingly
popular in the economics, finance and financial econometrics literature. However, much of the research
has concentrated on the empirical applications of various models, with little theoretical or statistical
analysis associated with the structure or asymptotic theory. Some structural and statistical properties
have recently been established for the Smooth Transition Autoregressive (STAR) - Generalised Autore-
gressive Conditional Heteroscedasticity (GARCH), or STAR-GARCH, model, including the necessary
and sufficient conditions for the existence of moments, and the sufficient condition for consistency and
asymptotic normality of the (Quasi)-Maximum Likelihood Estimator ((Q)MLE). While these moment
conditions are straightforward to verify in practice, they may not be satisfied for the GARCH model
if the underlying long run persistence is close to unity. A less restrictive condition for consistency and
asymptotic normality may alleviate this problem. The paper evaluates a weak sufficient, or log-moment,
condition for consistency and asymptotic normality of the QMLE for the STAR-GARCH model. This
condition can easily be extended to any non-linear conditional mean model with GARCH errors, subject
to appropriate regularity conditions. Although the log-moment condition cannot be verified as easily as
the second and fourth moment conditions, it allows the long run persistence of the GARCH process to
exceed one. The sufficient conditions for consistency and asymptotic normality are verified empirically
using S&P 500 returns, US 3-month Treasury Bill rates, and the exchange rate between Australia and
the USA.
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1 Introduction

Engle’'s (1982) Autoregressive Conditional
Heteroscedasticity (ARCH) model and Boller-
slev’s (1986) Generalised ARCH (GARCH) model
are the most popular models for capturing time-
varying symmetric volatility in financial and eco-
nomic time series data. Despite their popular-
ity, the structural and statistical properties of
these models were not fully established until re-
cently. However, most of the theoretical results
on GARCH models have assumed a constant or
linear conditional mean, and it has not yet been
established whether those results would also hold
if the conditional mean were non-linear.

Ling and McAleer (2003) proposed a mul-
tivariate ARMA - GARCH model, and estab-
lished its structural and statistical properties.
Jeantheau (1998) established consistency results
of estimators for multivariate GARCH mod-
els. His proofs of consistency did not assume
a particular functional form for the conditional
mean, but assumed a log-moment condition and
some regularity conditions for purposes of iden-
tification. =~ Chan and McAleer (2002) estab-
lished the structural and statistical properties for
the GARCH components in the Smooth Transi-
tion Autoregressive - GARCH (STAR-GARCH)
model. They showed that the results in Ling
(1999) and Ling and McAleer (2002a, b, 2003)
also applied in the case of STAR-GARCH, in-



cluding the necessary and sufficient conditions for
the existence of moments, and a sufficient con-
dition for consistency and asymptotic normality
of the (Quasi-) Maximum Likelihood Estimator

((QMLE).

This paper extends the results of Elie and
Jeantheau (1995), Jeantheau (1998), Boussama
(2000) and Chan and McAleer (2002), and shows
that a weaker log-moment condition derived by
Bougerol and Picard (1992) is sufficient to en-
sure consistency and asymptotic normality of the
(Q)MLE for the GARCH component in a STAR-
GARCH model. Moreover, the results of this
paper can easily be extended to a wide class of
non-linear time series models with GARCH er-
rors, subject to appropriate regularity conditions.

Finally, the Logistic STAR-GARCH (LSTAR
- GARCH) and Exponential STAR-GARCH (ES-
TAR - GARCH) models are estimated using S&P
500 Composite Returns, US 3-month Treasury
Bill returns, and the exchange rate between the
USA and Australia. The rolling empirical log-
moment and second and fourth moment condi-
tions, and their sensitivity to outliers and extreme
observations, are also examined in detail.

The plan of the paper is as follows: Section 2
provides a brief review of the GARCH and STAR-
GARCH models, with a particular emphasis on
their theoretical developments. A new theoret-
ical result regarding the statistical properties of
the QMLE for STAR-GARCH is also established.
The empirical results are presented in Section 3,
and Section 4 gives some concluding remarks.

2 The Models

This section discusses some of the most re-
cent theoretical results on the GARCH, STAR
and STAR-GARCH models. Definitions, regu-
larity conditions and sufficient conditions for the
existence of moments, stationarity and ergodic-
ity, and sufficient conditions for consistency and
asymptotic normality of the QMLE for these
models, will be discussed in detail. A new
and weaker sufficient condition for consistency
and asymptotic normality for the QMLE of the
STAR-GARCH model will also be presented.

Let (2, A, P) be a probability space, {y;,t €
Z} an R-valued process, and § = (¢, w, o, 8)" apa-
rameter in © € R¥+1 5o that ¢ = (¢, ¢, ..., dr)’,
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and 6y denote the true parameter vector. De-
fine y; as a discrete-time stochastic process with
generalised conditional heteroscedastic errors if,
VtelZ,

yr = fze;0) + &4 (2.1)
er =nv/he, e ~iid(0,1) (2.2)
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where Ty = (yt_l,yt_g,...,Et_l,Et_Q,...,Zt)l and
z¢ is a 1 x g vector of exogenous. Moreover, it is
assumed that a; > Oforalli =1,...,pand 5; >0
for all # = 1,...,q to ensure the positivity of hy.
When ¢ = 0, equation (2.3) reduces to Engle’s
(1982) ARCH(p) process.

Define the likelihood function to be

T
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The maximum likelihood estimator (MLE) for the
model defined in equations (2.1) - (2.3) is the so-
lution to the following maximisation problem:

6 = argmax,gl(), (2.5)

if n; is normally distributed. Otherwise, 6 is de-
fined as the Quasi-MLE (QMLE).

Chan and Tong (1986) and Tera§virta (1994)
extended the Threshold Autoregressive (TAR)
model of Tong (1978) and Tong and Lim (1980)
to allow for smooth transition behaviour, that is,

m
Yt = Z Gt (Gi1(865vi1, ¢i1)—Gi(845 73, €)) +eu,

i=1
¢ ~ iid(0,0?), (2.6)

where ¢; = (di1, ..., 0ir)'. Gi(sy;7y,¢) are often
called transition functions, which are required to
be at least twice differentiable and range from
zero to one, s; is the threshold variables, «; is the
transition rate, which reflects the speed of switch-
ing from one regime to another, and ¢; is the
threshold value, with ¢;_; < ¢; for alli =1, ...,m.
A comprehensive survey of recent developments
of this model can be found in van Dijk et al.
(2002).

The most widely used transition functions,
G(st;7,¢), are the logistic function given by

_ 1
~ 1+exp(—y(s; — )’

G(s157,0) (2.7)



and the exponential function given by

G(si;v,0) =1—exp(—y(st —)*).  (2.8)

A two-regime (m = 2) STAR model with a lo-
gistic (exponential) transition function is called
an LSTAR (ESTAR) model (see Terasvirta et
al. (1994) and Lundbergh and Terdsvirta (2000)
for applications of these models). A STAR-
GARCH model allows &; in equation (2.6) to fol-
low a GARCH process, as defined in (2.2)-(2.3)
or, equivalently, by setting f(z;¢) to follow a
STAR process, as defined in (2.6). Lundbergh
and Terdsvirta (1999) give a comprehensive ex-
position of this model, but do not provide any
regularity conditions for stationarity or the exis-
tence of moments, or any statistical properties.
Recently, Chan and McAleer (2002) showed that
the results in Ling (1999) and Ling and McAleer
(2002a, b, 2003) also hold for STAR-GARCH.
They showed that E(e7) < oo is sufficient for con-
sistency and E(e}) < oo is sufficient for asymp-
totic normality for the QMLE of STAR-GARCH.
Moreover, in the case of p = ¢ = 1, the necess-
ary and sufficient conditions for E(e?) < oo and
E(e}) < oo area+B < 1,and (a+8)?+2a2 < 1,
respectively (see Bollerslev (1986), Ling (1999),
Ling and Li (1997) and Ling and McAleer (2002a,
b) for further details). Furthermore, Chan and
McAleer (2003) investigated the effects of outliers
and extreme observations on the QMLE of the
STAR-GARCH model.

A less restrictive condition, namely the log-
moment condition of Nelson (1990) (see also
Bougerol and Picard (1992)), is given below
for the consistency and asymptotic normality of
QMLE for the STAR-GARCH model with p =
g = 1 (the proof is available upon request).

Proposition 1: Denote 6 as the solution to the
mazimisation problem as defined in (2.5), with
p=gq =14n (2.3). Under strict stationarity
and ergodicity (see Proposition 1 in Chan and
McAleer (2002)), and E(log(ain? + 1)) < 0, it
follows that 0 is consistent for 8y and asymptoti-
cally normal.

Corollary 1: If E(e?) < oo, it follows that 0 is
consistent for 0y and asymptotically normal.

3 Empirical Results

This section examines the empirical moment
conditions of STAR-GARCH models for three
sets of empirical data, namely Standard and
Poor’s 500 Composite Index (S&P), US 3-month
Treasury Bill Middle Rate returns (USTB), and
the US/Australia Exchange Rate (US/AUD).
Daily data for S&P are obtained from DataS-
tream Services, with the sample period 1/1/1986
to 12/4/2000, giving 3726 observations in total.
Weekly data for USTB are obtained from DataS-
tream Services, with sample period 1/1/1986 to
30/12/1998, giving 689 observations. Daily data
for US/AUD are obtained from dX EconData,
with sample period 1/1/1986 to 12/4/2000, giv-
ing 3726 observations.

Of primary interest are the returns for these
series, which are calculated as r; = logy; —

log y¢—1.

The dynamic paths of & and B, as well as the
empirical log-moment and second and fourth mo-
ment conditions for all cases, are available upon
request.

3.1 S&P’s Composite Index

The results show that the & and B estimates
seem to be affected greatly by the presence of out-
liers. When the outlier in observation 466 was re-
moved from the rolling window, & (3) decreased
(increased) from 0.106 (0.876) to 0.033 (0.959).
This suggests that the outlier has a positive (neg-
ative) impact on @& (B), which conforms with the
empirical findings of Chan and McAleer (2003)

and Verhoeven and McAleer (2002).

As the estimates are sensitive to the presence
of outliers, the empirical moment conditions are
subsequently affected. The movements of the em-
pirical log-moment and second moment are sim-
ilar to the movements in B When the outlier is
removed from the rolling sample, the log-moment
increased from -0.035 to -0.08, and the second
moment increased from 0.982 to 0.992. This is
primarily due to the fact that the outlier seemed
to have a larger impact on  than on &. The
mean empirical log-moment and second moment
are -0.019 and 0.990, respectively.

Movements in the empirical fourth moment do
not seem to be as dramatic as the log-moment and
second moment. Although the results show sub-
stantial fluctuations in the fourth moment, the



range of variability is narrower than for the log-
moment and second moment. Despite the up-
ward trend in the empirical fourth moment, all
rolling samples satisfy the fourth moment condi-
tion, with a mean of 0.991.

Rolling estimates for S&P for ESTAR-
GARCH reveal a similar pattern to LSTAR-
GARCH. Movements in & and /3 are almost iden-
tical to the movements in & and S for LSTAR-
GARCH: & decreased from 0.107 to 0.033 when
the outlier was removed from the rolling sample,
while § increased from 0.876 to 0.959.

Not surprisingly, the movements in the em-
pirical log-moment and second and fourth mo-
ments are also very similar to those for LSTAR-
GARCH. Again, the empirical log-moment in-
creased from -0.035 to -0.008 when the outlier was
removed from the rolling sample, while the second
moment increased from 0.983 to 0.992. Further-
more, movements in the empirical fourth moment
are also similar to the movements in the fourth
moment for LSTAR-GARCH. As in the case of
LSTAR-GARCH, all rolling samples satisfy the
fourth moment condition for ESTAR-GARCH.
The mean log-moment and second and fourth mo-
ments are -0.019, 0.990 and 0.991, respectively.

3.2 US 3-month Treasury Bill Rate

Both a and B moved steadily in the early
rolling samples around means of 0.227 and 0.725,
respectively. The inclusion of the two extreme
observations (namely, 588 and 589) in the rolling
samples increased & from 0.231 to 0.296, while B
decreased from 0.707 to 0.620. However, when the
outlier in observation 95 was removed from the
rolling sample, & decreased from 0.264 to 0.148,
while 8 increased from 0.639 to 0.777. This sug-
gests that the QMLE is sensitive to extreme ob-
servations and outliers, and that the relative size
of these aberrant observations would also seem to
be a critical factor in determining their effects on
the estimates.

All rolling samples satisfy the empirical log-
moment and second moment conditions. The ef-
fects of aberrant observations on the empirical
log-moment and second moment conditions are
illustrated in rolling sample 87, when the log-
moment decreased from -0.119 to -0.185, while
the second moment decreased from 0.938 to 0.916.
These changes are due primarily to the inclusion
of the two extreme observations, and their effects
on & and (. Similarly, the removal of the out-

lier in observation 95 increased both the empir-
ical log-moment and second moment due to the
effects on .

The first 85 rolling samples fail to satisfy the
fourth moment condition for LSTAR-GARCH.
However, the fourth moment begins to decline as
some of the extreme observations prior to obser-
vation 95 are removed from the rolling samples,
and subsequently decreased & dramatically. Since
the empirical fourth moment seems to be more
sensitive to changes in &, the decline in the em-
pirical fourth moment would to be expected.

Although & and ﬁ exhibit greater fluctua-
tions in the early rolling samples, these esti-
mates vary around similar means to their LSTAR-
GARCH counterparts. Moreover, the effects
of the aberrant observations on the estimates
of ESTAR-GARCH are identical to those of
LSTAR-GARCH. The inclusion of the two ex-
treme observations (namely 588 and 589) in-
creased a from 0.231 to 0.296, while B decreased
from 0.707 to 0.620. Furthermore, the removal
of the outlier in observation 95 decreased & from
0.264 to 0.148, while 3 increased from 0.639 to
0.777. Interestingly, & and 8 in ESTAR-GARCH
are equal to their LSTAR-GARCH counterparts
up to 3 decimal places for the rolling samples de-
scribed above.

The empirical log-moment for ESTAR-
GARCH reveals a similar pattern to LSTAR-
GARCH. Again, the empirical log-moment de-
creased from -0.119 to -0.184 when the two ex-
treme observations are included in the rolling
samples, but increased from -0.178 to -0.099 when
the outlier in observation 95 is removed from the
rolling sample. The empirical second and fourth
moments seem to be more volatile in the early
rolling samples, due to the more volatile & and
B estimates of ESTAR-GARCH in the early peri-
ods. However, the effects of the aberrant observa-
tions are similar to those of LSTAR-GARCH. As
in the case of LSTAR-GARCH, the first 85 rolling
samples fail to satisfy the fourth moment condi-
tion due to the high & estimates. However, the
empirical fourth moment decreased to less than
one when the outlier was removed from the rolling
sample, due to its positive effects on &.

3.3 US/AUD Exchange Rate

The results show that & declines consistently
throughout the rolling samples, with two dra-
matic drops, namely rolling samples 329 and 392:



& decreases from 0.09 to 0.064 in the first in-
stance, and decreases further from 0.069 to 0.036
in the second.

Correspondently, B rises consistently through-
out the rolling samples, with two dramatic in-
creases in rolling samples 329 and 392. In fact, 8
increases from 0.860 to 0.914 in the first instance,
and increases further from 0.907 to 0.959 in the
second.

There is no obvious aberrant observation be-
ing removed or added in the two rolling samples.
Thus, the dramatic movements do not seem to be
caused by extreme observations or outliers in the
data. This shows that data other than aberrant
observations can cause serious changes in the es-
timates. This would be an interesting area for
future research.

The movements in the empirical log-moment
and second and fourth moments seem to mimic
the movements in #. All the rolling samples sat-
isfy the empirical log-moment and second and
fourth moment conditions.

Interestingly, & and 3 for ESTAR-GARCH
are often equal to their LSTAR-GARCH coun-
terparts up to 4 decimal places. This suggests
that both conditional means manage to capture
the dynamics in the data. More importantly, all
moment conditions are also satisfied for all the
rolling samples for ESTAR-GARCH.

4 Concluding Remarks

This paper has provided a weak sufficient, or
log-moment, condition for the consistency and
asymptotic normality of QMLE for the STAR-
GARCH(1,1) model. The condition can be ex-
tended to any non-linear time series model with
GARCH(1,1) errors, subject to appropriate regu-
larity conditions.

The effects of aberrant observations on the
empirical moments were discussed through the
use of rolling estimates on three data sets,
namely Standard and Poor’s Composite 500
Index (S&P), US 3-month Treasury Bill rate
(USTB), and the exchange rate between the USA
and Australia (US/AUS). The results showed
that extreme observations and outliers affected
the empirical moment conditions through their
effects on the QMLE.

Although there have been some theoretical

developments of STAR-GARCH models in re-
cent years, the task of understanding the na-
ture of non-linear models with conditionally het-
eroscedastic errors is far from complete. Lam-
oureux and Lastrapes (1990) examined the ef-
fects of a structural shift in the conditional
variance by including dummy variables in the
GARCH equation. Lundbergh and Terisvirta
(1999) extended the concept of structural change
in the conditional variance by incorporating the
smooth transition mechanism in the GARCH
equation, known as STAR-Smooth Transition
GARCH (STAR-STGARCH). Although allowing
smooth transition behaviour in both the condi-
tional mean and the conditional variance would
seem to be a useful extension of STAR-GARCH,
the lack of structural and statistical properties for
these models has prevented their widespread use
in the literature. Future research in establishing
the structural and statistical properties of these
models is likely to provide invaluable insights into
further appropriate applications of these models.
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