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Abstract: The volatility, or conditional variance, of some variables in economics and finance can be proportional to a 
power function of the levels. It is shown that this process, which is known as the constant elasticity of volatility 
process, can be generated by the inverse Box-Cox transformation of an integrated series with small innovations. A test 
is proposed for the hypothesis that the power parameter, or volatility elasticity, has a specific value, when the 
innovation follows a GARCH(p,q) process. The test statistic detects the correlation between the conditional variance 
and the level of the integrated process, is shown to be a function of Brownian motions under the null hypothesis, and 
has a nonstandard asymptotic distribution.  
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1. INTRODUCTION 

 
It is widely accepted in economics and 

finance that the volatility of the short-term interest rate, 
namely the conditional variance of interest rate changes, 
is sensitive to its level. For example, the Cox, Ingersoll, 
and Ross (1985) model assumes that the conditional 
volatility of changes in the interest rate is proportional 
to the level of the interest rate. Although the Cox, 
Ingersoll, and Ross model was developed to analyze a 
single-factor general equilibrium term structure, it has 
been used extensively in the analysis of valuation 
models for contingent claims that are sensitive to 
interest rates. Marsh and Rosenfeld (1983) assume that 
volatility is proportional to the square of the interest 
rate, so that the interest rate follows a geometric 
Brownian motion process. Courtadon (1982) uses a 
similar process to develop a model of discount bond 
option prices. Assuming that volatility is proportional 
to the cube of the interest rate, Constantinides and 
Ingersoll (1984) value bonds in the presence of taxes. 
A useful comparison of alternative economic models of 
the dynamics of short-term interest rate volatility is 
given in Chan et al. (1992). For recent developments of 
the constant elasticity of volatility (CEV) process, see 
Conley et al. (1997) and Smith (2002). 

The magnitude of the elasticity of volatility 
with respect to the level of interest rates has been a key 
empirical issue, but no consensus seems to have yet 
been reached. Chan et al. (1992) reported that the 
actual elasticity is higher than those typically assumed 

in theory. However, Brenner et al. (1996) obtained a 
lower estimate of the elasticity under the assumption of 
serially correlated volatility. In particular, they 
suggested that the reported high elasticity could be 
explained by neglected time-varying (conditional) 
heteroscedasticity.  

In addition to conditional heteroscedasticity, 
it is necessary to deal with nonstationarity 
appropriately in order to estimate the dynamics of 
volatility. It is natural to propose that short-term 
interest rates follow a random walk process, as mean 
reversion is rarely supported in empirical analysis. 
Owing to the presence of an integrated process, the 
estimators and test statistics are likely to have 
nonstandard distributions, so that conventional 
inferences might be invalid. However, to date there 
does not seem to have been any development of 
statistical tools to accommodate such nonstationary 
data, in which volatility depends upon the level of an 
integrated process.   

In this paper we propose a test for the 
hypothesis that volatility is proportional to a power 
transformation of nonstationary interest rates, and 
derive the asymptotic distribution of the test statistic 
when the innovation follows a GARCH(p,q) process. 
The test statistic is expressed as a function of Brownian 
motions under the null, and has a nonstandard 
asymptotic distribution.    

Although the motivation of the test 
procedure is based on analyzing short-term interest 
rates, the method developed in the paper is applicable 
to a variety of other data. For example, as argued in 

  



Hull (1997, pp.494–497), the volatility of stock prices 
is likely to be negatively correlated with their levels. 

This problem seems to be essentially the sam

e as that described above, but with opposite 
sign.   

The plan of the paper is as follows. In 
Section 2 the CEV process and the GARCH model are 
discussed. In Section 3, the CEV process is derived as 
the inverse Box-Cox transformation. In Section 4 the 
associated test statistic is defined, and its asymptotic 
properties are obtained.  

 
 
2. THE CONSTANT ELASTICITY OF 

VOLATILITY MODEL AND THE 
GARCH MODEL 

 
It is often assumed that short-term interest rates 

change according to the following model:  
 

yt - yt-1 = yt-1
λεt,    t=1,...,n,    

(1) 
 

where  is the interest rate at time  and ty t tε  is the 

innovation term. This model defines the constant 
elasticity of volatility (CEV) process, where the 
conditional variance of changes in the rate of interest is 
proportional to a power function of its level. In the 
context of a broad class of short-term interest rate 
models, Chan et al. (1992) present four alternative 
values for λ in (1), namely: λ = 0, in which the 
conditional volatility of changes in the interest rate is 
constant; λ = 0.5, in which the conditional volatility 
of changes in the interest rate is proportional to its 
level; λ = 1 in the geometric Brownian motion of 
Black and Scholes (1973), in which the conditional 
volatility of changes in the interest rate is proportional 
to its square; λ=1.5, in which the conditional volatility 
of changes in the interest rate is proportional to its 
cube; and unspecified λ.  
 In light of recent developments in the 
literature, it is natural to assume that εt in equation (1) 
follows a GARCH(p,q) process, that is, the conditional 
distribution of εt, given the information set at time t-1, 
Ωt−1, is specified as   
 
 εt| Ω t−1 ~ NID(0,  σt

2),  

 σt
2 ≡ ω + Σ αi εt−i

2+ βiσt−i
2,      

(2) 

p
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q
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and ω>0, αi ≥ 0 (i=1,..,p) and βi≥ 0 (i=1,..,q) are 

sufficient conditions for σt
2>0. The ARCH (or αi) 

effect indicates the short run persistence of shocks 

(namely αi), while the GARCH (or βi) effect 

indicates the contribution of shocks to long run 

persistence (namely αi + βi).  

p
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 When q=0, the GARCH(p,q) model (2) 
reduces to Engle's (1982) autoregressive conditional 
heteroscedasticity (ARCH(p)) model. Bollerslev (1986) 
showed that the necessary and sufficient condition for 
the second-order stationarity of the GARCH(p,q) 
model in (2) is  
 

  αi+ 

 βi < 1,                               (3) 

p

i 1=
Σ

q

i 1=
Σ

Ling and McAleer (2002a) established a simple 
sufficient condition for the strict stationarity and 
ergodicity of a family of GARCH(1,1) models, and 
obtained the necessary and sufficient condition for the 
existence of the moments. The causal expansion of the 
GARCH(p,q) process and the existence of a unique 
stationary solution can be used to show that the process 
starts infinitely far in the past with finite 2m-th moment. 
Ling (1999) showed that a sufficient condition for the 
existence of the 2m-th moment of the GARCH(p,q) 
model is  
 
         ρ                    
(4) 

,1)]([ <⊗m
tAE

 
where ρ(A) = max{eigenvalues of a matrix A}, A⊗m 

= A⊗A⊗...⊗A (m factors), ⊗ is the Kronecker 
product, and the matrix At is a function of ηt and 
(α1,.., αp, β1,..,βq)'. [Note that equation (1) is a 
special case of (4) when m=1.] Ling and McAleer 
(2002b) showed that condition (4) is necessary and 
sufficient for the existence of the 2m-th moment. 
Therefore, the complete moment structure of the 
GARCH(p,q) model has now been established.   
 Defining θ = (w, α1,.., αp, β1,..,βq )', 
maximum likelihood estimation can be used to estimate 
θ. Given observations εt, t=1,...,n, the conditional 
log-likelihood can be written as  
 

   = -(1/2) (logσt
2flog

n

t 1=
Σ  + εt

2/σt
2)    

  
in which σt2 is treated as a function of 1 2, ,t tε ε− − L . 
Let θ ∈ ∆, a compact subset of Rp+q+1, and define  
 

  



 ˆ arg max log fθ
θ ∈ ∆

= .   
Assumption 2: ω depends upon the sample size n and 
0 < ω  = O(n−1).   
 As the conditional error εt is not assumed to be normal, 

 is called the quasi-maximum likelihood estimator 
(QMLE). For the GARCH(p,q) model, Ling and Li 
(1998) proved that the local QMLE is consistent and 
asymptotically normal under fourth-order stationarity.  
Ling and McAleer (2003) proved the consistency of the 
global QMLE under only the second moment condition, 
and derived the asymptotic normality of the global 
QMLE under the sixth moment condition. 

θ̂
 

p

It is easy to see that 
 

0 (1) (1)t pz z O O= + =         (8) 

 
from Assumptions 1 and 2, since 
 
 , 1/ 2( )t pO nε −=
  0 1 (1)t tz z Opε ε− = + + =L .   (9) 

 
  
The small volatility of tε  is essential in showing that 

the CEV process can be generated by the inverse Box-
Cox transformation of , namely, tz

3. THE BOX-COX MODEL AND 
INTEREST RATE PROCESSES  

 
 In this section it is shown that the CEV 
process yt defined by (1) can be generated by the 
inverse Box-Cox transformation of an integrated 
process. First, it is assumed that the integrated process 

 with initial value  has a GARCH innovation, 

namely  
tz 0z
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exp( ), 1

t
t

t

zy
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λ
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=

        (10) 

 
under Assumptions 1 and 2. The small volatility of , 

which is implied by the small volatility of , seems 

realistic since short-term interest rates have small 
volatility compared with the level, especially in high-
frequency data. Note that, from Assumptions 1 and 2, 

 is bounded, namely 

ty

tz

ty

 

1 , ( 1,..., )t t tz z t nε−= + =      
(5) 

 
where  

  
εt| Ω t−1 ~ NID(0, σt

2),       (6)  0 (1) (1)t py y O Op= + = ,         (11) 

  σt
2 ≡ ω + αi εt−i

2+ βiσt−i
2      (7) 

p

i 1=
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since  is bounded and the transformation (10) is 

continuous 
tz

 
and tε  satisfies the following assumption:  The next assumption makes the inverse Box-

Cox transformation monotonic for any value of λ .  
Assumption 1:  The GARCH(p,q) process εt defined 
by (6) and (7) is stationary and has finite fourth-order 
moment.  

 
Assumption 3:  is sufficiently large so that the 

probability of  is negligible for any . 
0z

> 0tz t 
 Assumption 1 is satisfied if equation (4) is 

satisfied for m≥2, as reviewed in the previous section, 
from the results of Ling (1999), Ling and Li (1998), 
and Ling and McAleer (2002b). In the problem 
considered here, the conventional condition (3) is 
satisfied because it is a special case of (4) for m=1. 

From the monotonicity of the transformation in (10), 
the GARCH(1,1) process  can be obtained by the 

Box-Cox transformation of the CEV process , 

namely  

tz

ty

  Second, it is assumed � tends to 0, and 
hence the volatility of  tends to 0 as the sample 

size  increases. The suffix  is suppressed for the 
sake of notational simplicity, although 

tz
n n

ω  should be 
written as nω  and tσ  as ,n tσ .  
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t

t
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where 1γ λ≡ − .   

We now propose a test for the hypothesis 
that the conditional volatility of  depends upon the 

levels, where  is obtained by the Box-Cox 

transformation of  in (12). The test is designed to 

detect the correlation between  and the 

conditional volatility of 

tz

1t

tz
yt

1tz −

tz z −− , and is interpreted as 

a test for the null hypothesis that the value of the Box-
Cox transformation parameter λ  in (12) is correct.  
Note that Assumptions 2 and 3 are unnecessary, though 
harmless, in deriving Theorem 1 below because these 
assumptions are used only to derive Lemma 1. Only the 
integrated process defined in Assumption 1 is required 
to obtain the asymptotic expression of the test statistic. 
However, Assumptions 2 and 3 are necessary in order 
to interpret the procedure as an hypothesis test for the 
constant elasticity of volatility. 
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 When 1λ ≠ , a Taylor expansion of 
 in powers of 1t ty y −− tε  gives 
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and, when 1λ = , it gives 
  The test statistic is defined by  

  . 1
1 1 ( )t t t t py y y O nε −

− −− = +

  ( 2 2
1

1

1 ˆ/ 1
n

t t t
t

S z
n

ε σ −
=

= −∑ ) ,       (14)  
 Thus, we have the following lemma: 
   
Lemma 1: Under Assumptions 1-3, we have that  where 1t t tz zε −≡ −  and  is the estimated 

conditional volatility.  This test is, essentially, the 
sample covariance of  and 1tz −

2 ˆ/t σ
1

; if the Box-

Cox transformation parameter λ≡ −  is chosen 

correctly in (12), 2
tε  has no correlation with 1tz −

, 

and hence S would be distributed around zero.  

  
   .     (13) 1

1 1 ( ) (t t t t p py y y O n O nλε − −
− −− = + = 1/2) 2

t 
 This shows that the interest rate process  with 

volatility proportional to 
ty

2
1ty λ

−

tz

 can be expressed 

asymptotically by the inverse Box-Cox transformation 
of the integrated process . Thus, from the CEV 

process (13), we can obtain an integrated series whose 
associated volatility is asymptotically independent of 
the level by using the Box-Cox transformation. 

Assumptions 1 and 4 are necessary to obtain 
the asymptotic expression of the test statistic. 

 
Assumption 4:  The MLE of the GARCH parameter 
θ =(ω, α1,.., αp, β1,..,βq)'  for (7) is consistent and 
asymptotically normal.  It should be noted that Assumptions 1 and 2 

are sufficient to ensure that  is not explosive.  We 

could also have bounded  by the assumption of 

stationarity. However, the low volatility of interest 
rates compared with their levels seems far more 
realistic than that of stationarity, which has been shown 
to be difficult to support empirically (see, for example, 
Brenner et al. (1996)).   

tz

ty
 
 First, expand the estimated volatility as  
 

( )

( ) ( )

2 2

4 4

1 1

ˆ ˆ1/ 1/ /

ˆˆ / / ...,

t t t

p q

it i i t it i t
i i

w

a b

σ σ ω ω

α α σ β σ
= =

= − −

− − − − +∑ ∑
  

(15) An analysis based upon the assumption that 
the variance converges to 0 as the sample size 
increases is known as a small-σ expansion. Bickel and 
Doksum (1981) used this method in investigating the 
small sample properties of the Box and Cox (1964) 
model.  

 
where the derivatives of the conditional volatility are 
denoted by 
 

 , ,t i it
i i
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σ σ σ
ω α β
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4.  TEST STATISTIC and are obtained recursively 
  

 Then, from (15), we have the following 
expansion: 
 

  



( )

( )

( )

2
1 11 1

2 2
1 1

2
1 1

4
1 1

2
1 1

4
1 1

ˆ
/ 1

ˆ

ˆ (1).

n n
t t t t

t
t tt t

p n
t t

i i it
i t t

p n
t t

i i it p
i t t

z zS n n

zn a

zn b o

ω ωεσ σ
σ σ σ σ σ

εα α
σ σ

εβ β
σ σ

− −− −

= =

− −

= =

− −

= =

− 
= − − 

 

− −

− − +

∑ ∑

∑ ∑

∑ ∑

2
2

4 wε

   (16) 

 
First, we can easily see that 
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Noting that the log-likelihood function of tε  is 

expressed as   
 

( )2 2 2
1log ( ) (1/ 2) log ,t t t t tf ε σ−Ω = − + ε σ  

 
and  
 0 / ,t tv ε σ≡   
  2 2

1 / 1t t tv ε σ≡ − ,
 

2 2 2
2 1 1(1/ 2) / log ( ) / ,t t t t t tv v w fσ σ σ ε ω−≡ = ∂ Ω ∂  

2
3 1 1(1/ 2) log ( ) / ,it t it t t t iv v a fσ ε α−≡ = ∂ Ω ∂  

2
4 1 1(1/ 2) / log ( ) / ,it t it t t t iv v b fσ ε β−≡ = ∂ Ω ∂
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are Martingale difference sequences. The partial sum 
of 
 
  ( 0 1 2 31 3 41 4, , , , , , , ,t t t t t pt t qv v v v v v v v≡ L L

 
converges to a multivariate Brownian motion, that is,   
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defined upon  with covariance matrix 0 s≤ ≤ Σ , 
whose elements are given by the unconditional 
covariance , and [cov(ijΣ = , )it jtv v ]ns is the 

largest integer not greater than ns. Noting that 
 is orthogonal to εt conditionally, 

the elements of 

2 2/1t tv ε σ≡ 1t −

Σ  are given as follows: 

= Σ
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where σ2≡ E[εt
2].  Then,  

 
( )( )
( )

1/2 2
1 1

1
2 31 3 41 4 (2,4)

ˆ ˆˆ ˆ ˆ/ , ,..., , ,...,

(1), (1), (1), (1), , (1) ,

p p q q

p q

n

B B B B B

ω ω σ α α α β β β β
−

− − −

⇒ ΣL L

    

(19) 
 
where  
 

( )(2,4) 2 31 3 41 4(1), , (1), (1), , (1)p qVar B B B B BΣ ≡ L L .   
 
The first term on the right-hand side of the expansion 
of S in (16) can be expressed as  
 

. (20) ( )1 2 2
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1
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 Then, from (17), (19), and (20), we have the 
expression  
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where  are defined in (15) and the 

Brownian motion and its variance-covariance matrix 
are defined in (17). It is easy to see that the distribution 
of 

, ,t i iw a

/S σ  is independent of 2σ  and ω .   
  The results are summarized in the following 
theorem: 
 
Theorem 1: Assume that  is generated by the 

inverse Box-Cox transformation (10) under 
ty

  



Assumptions 1 and 4. Under the null hypothesis that 
the transformation parameter λ  is correct, the test 
statistic S in (14) has the asymptotic expression (21).    

1) B s

( )2 ,t tw

, B

Brenner, R. J. R., H. Harjes and K. F. Kroner (1996), 
Another look at models of the short-term interest 
rate, Journal of Financial and Quantitative Analysis, 
31, 85-107. The cases where (p,q)=(0,0) and (p,q)=(1,0) 

require special attention in applying the formula in (21). 
First, consider the  case  where  (p,q) = (0,0), 
namely where  

Chan, K.C., G.A. Karolyi, F.A. Longstaff and A.B. 
Sanders (1992), An empirical comparison of 
alternative models of the short-term interest rate, 
Journal of Finance, 47, 1209-1227.  εt

 ~ NID(0, σ2). As σt
2= σ2= ω, we have only to 

estimate ω, so that the asymptotic expression for S 
reduces to  

Conley, T.G., L.P. Hansen, E.G.J. Luttmer, and J.A. 
Scheinkman, (1997) Short-term interest rates as 
subordinated diffusions, Review of Financial 
Studies, 10, 525-577.  

 , 0 1 0/ ( ) ( ( ) (S B s dB s B s dsσ = −∫ ∫ ) Constantinides, G.M. and J.E. Ingersoll (1984), Option 
bond trading with personal taxes, Journal of 
Financial Economics, 13, 299-335. 

 
because B1(s)≡2B2(s) and σt

2 = σ2. Courtadon, G. (1982), The pricing of options on 
default-free bonds, Journal of Financial and 
Quantitative Analysis, 17, 75-100. 

 When εt follows an ARCH(1) process, that 
is,  

Cox, J.C., J.E. Ingersoll and S.A. Ross (1985), A 
theory of the term structure of interest rates, 
Econometrica, 53, 385-407.  

σt
2 ≡ ω +αεt-1

2,  
it is necessary to estimate ω and α. In this case, the 
asymptotic expression for S is given by 
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Engle, R.F. (1982), Autoregressive conditional 
heteroskedasticity with estimates of the variance of 
United Kingdom inflation, Econometrica, 50, 987-
1007. 

Hull, J.C. (1997), Options, Futures, and Other 
Derivatives, third edition, Prentice-Hall.   

and . ( )(2,3) 2 3 3(1), (1), (1)Var B BΣ ≡ L Ling, S. (1999), On the probabilistic properties of a 
double threshold ARMA conditional 
heteroskedasticity model, Journal of Applied 
Probability, 36, 1-18. 

 The null hypothesis is rejected when the 
deviation of S from 0 is sufficiently large in absolute 
value.  

Ling, S. and W.K. Li (1998), Limiting distributions of 
maximum likelihood estimators for unstable 
ARMA models with GARCH errors, Annals of 
Statistics, 26, 84-125. 
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