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Abstract: In this paper the concept of local outliers is introduced to volatility modeling. It is demonstrated that local 
outliers are influential observations which have a substantially greater impact on the QMLE of the GARCH model 
than other observations. Local outliers are not detected by the Chen and Liu (1993) method as they are relatively 
small in size and do not generate large residuals for the GARCH model. When a simple filter for these outliers is 
applied to the data, substantial gains in efficiency are obtained.   
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1. INTRODUCTION Breunig et al. (1999) also suggest that being an 

outlier is not just a binary property, and introduce the 
concept of a local outlier factor to capture the relative 
degree of isolation or outlier-ness of an observation 
with respect to its surrounding neighbours. For many 
situations, it is more meaningful to assign to each 
observation a degree of being an outlier as this allows 
observations to be ranked according to this degree, 
thereby providing an order for analyzing outliers.  

1.1 Local Outliers 
Whether to treat an observation as an outlier has 
been, and remains, an important problem in statistical 
inference. There is no universally-accepted definition 
of an outlier. Hawkins (1980) proposed the following 
intuitive definition: “An outlier is an observation that 
deviates so much from other observations as to 
arouse suspicions that it was generated by a different 
mechanism.” According to this model-based 
definition, outliers are a "subjective, post-data 
concept" (Beckman and Cook, 1983) which can only 
exist with reference to a specific model. For 
autoregressive models, clustering and outlier 
detection are closely related concepts.   

 
1.2 Specification of Mean and Variance  
Consider the following generalised autoregressive 
conditional heteroskedasticity model, GARCH(1,1), 
where the conditional mean (or logarithmic-returns) 
is given by an AR(1) process:  

  

ttt yy εϕµ ++= −1 ,     | 1|<ϕ                (1) Breunig et al. (1999) introduced the notion of local 
outliers by taking into account the clustering structure 
in its bounded neighborhood, specifically the k 
nearest (local) neighbours. The concept of local 
outliers is similar to the concept of spatial outliers, 
which are observations that are inconsistent with (or 
isolated from) those in their immediate 
neighbourhood, even though they may be consistent 
with the overall sample (Shekhar et al., 2001). This 
contrasts with the concept of global outliers, namely 
observations that are isolated from the overall 
sample.1 The concept of local outliers may be 
considered as a measure of continuity, namely how 
well the next observation can be predicted beyond the 
known (previous) observations.2  

 
where ( )tt hf ,0~ε , and the conditional variance 
of the residuals is given by a GARCH(1,1) process: 
 

1
2
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The conditional variance of  can be used to obtain 
the normalized (or standardized) error, 

tε
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which is assumed to be i.i.d. ,1,0( θf . The α (or 
ARCH) parameter captures the short run persistence 
of shocks, while the β (or GARCH) parameter 
captures the contribution of shocks to long run 
persistence, α+β. Sufficient conditions for the                                                  

1 Thus, global outliers refer to observations that lie far outside the 
tails of the unconditional distribution. 
2 Continuity assumes that there is a greater chance of connection 
between two contiguous elements (auto correlated) than between 

either one of the elements and any of the other non-contiguous 
elements. 
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conditional variance to be positive are ω > 0, α ≥ 0 
and β  ≥ 0. 
 
In these models, kurtosis of the conditional 
distribution has been widely used as a diagnostic 
check for the correct specification of the mean-
variance dynamics.  A given observation will appear 
to be extreme in terms of the standardized residuals 

tη , when its magnitude is large relative to the 
conditional volatility, 

th . Conversely, an extreme 
observation will lie in the tails of the conditional 
distribution when the conditional volatility at time t is 
high, that is, when  or 2

1−tε 1−th  is large.  
 
It follows that the influence of an observation at time 
t on the Quasi Maximum Likelihood Estimates 
(QMLE) largely depends on whether it is clustered 
with its preceding neighbours, that is, whether or not 
it can be anticipated. In the absence of clustering, the 
QMLE will try to capture isolated observations by 
increasing  through increasing the α or β 
estimates.

th
3 

 
Whether an observation persists, that is, clustered 
with its nearest proceeding neighbours, may also be 
an important factor in determining its influence on 
the QMLE. When an observation is isolated from its 
preceding neighbours but is not persistent, an 
increase in either (or both) the α or β estimates may 
lead to overestimation of the subsequent volatility, 
leading to inliers4 in the conditional distribution. That 
is, it may result in a peaked conditional distribution, 
thereby yielding high kurtosis.5  
 
In summary, the degree of influence of an 
observation at time t on the QMLE of the conditional 
variance model will depend on: (i) lagged conditional 
volatility; (ii) lagged squared residual; and (iii) 
whether the observation persists, that is, whether 

 is large. For example, the smaller is the 
difference in squared magnitude between the 
observation and its preceding neighbours, the smaller 
is the marginal increase in the α estimate required to 
capture it through . Similarly, the larger is the 

previous conditional volatility ( ), the smaller is 

2
it+ε

2
1−tαε

1−th

the marginal increase in the β estimate required to 
capture such an observation through 1−thβ . 
However, there will be a trade-off between the α and 
β estimates so as not to cause over-persistence in the 
conditional variance, as implied by the magnitude of 
the α+β estimate. More specifically, for non-
persistent observations, an increase in the α estimate 
may be more desirable than an increase in the β 
estimate, as this is more likely to generate normality 
in the standardised residuals.  
 
This paper proposes a simple intuitive measure for 
the degree of outlier-ness of an observation based on 
its degree of clustering. The remainder of the paper is 
organized as follows: Section 2 presents the 
methodology and data, Section 3 discusses the 
empirical results, and Section 4 concludes the paper. 
 
2. METHODOLOGY AND DATA 
In order to obtain a better understanding of what 
makes an observation influential, a single observation 
of various sizes will be inserted into the various 
estimation periods. Two alternative methodologies 
will be used, with one involving a fixed estimation 
period and the other using a rolling sample.    
 
In the fixed estimation period, a single global outlier 
will be inserted at various (random) points.6 The aim 
of this method is to examine the degree of outlier-
ness and influence of an observation on the QMLE 
by taking into account the characteristics of the data 
in its immediate surroundings. The fixed estimation 
period consists of a single period of 2500 daily 
returns, allowing a comparison between the original 
and adjusted data. A rolling window methodology of 
1240 observations is used to examine how various 
features of the data further from the added extreme 
observation mitigates its degree of influence.   
 
The following measures are proposed for the degree 
of outlier-ness of an observation: 
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3 The α and β estimates are obtained subject to the restriction that 
α+β< 1. 
4 Inliers are observations that have values very close to the mean of 
the distribution. 

                                                 5 Strictly speaking, when such inliers appear at a frequency that 
cannot reasonably be considered to be consistent with normality, 
these should be classified as outliers. 

6 The global outlier has a magnitude of 10 standard deviations from 
the unconditional sample mean. 

  



The outlier factors cvb and cva measure the degree of 
isolation of the variance of the observation from its 
nearest preceding and proceeding neighbours, 
respectively. Hence, the larger are these factors, the 
more isolated will the observation be from its 
immediate neighbourhood. Vratio is defined as the 
ratio of the conditional volatility (or clustering) 
preceding and proceeding the observation. The 
smaller is this ratio, the greater is the persistence of 
the observation. In this paper, the length of the 
neighbourhood (k) is set at 10 days.  

The results confirm our intuition, namely that the 
influence of a global outlier on the QMLE of the 
GARCH model can be substantial, though the extent 
of its influence depends largely on its degree of 
outlier-ness. In most instances, when a global outlier 
is inserted, the α estimate increases substantially in 
magnitude. For Nasdaq (DJIA), of 20 (23) cases 
where a single global outlier (10σ) is inserted, there 
are: (i) 14 (11) cases where there is an increase in the 
α estimates; (ii) 5 (9) cases where there is an increase 
in the β estimates; (iii) 13 (13) cases where there is a 
decrease in the (α+β) estimates; (iv) 4 (8) cases 
where there is an increase in both the β and (α+β) 
estimates; and (v) 3 (3) cases where there is an 
increase in both the α and (α+β) estimates.   
Interestingly, there are no cases in which both the α 
and β estimates increased, and just 1 case (3 cases) 
where both the α and β estimates decreased. These 
results imply that, although the penalty on outliers is 
substantially larger than the penalty on inliers, there 
is a strong trade-off between the α and β estimates in 
controlling the number of inliers that are generated.   

 
In order to establish the relevance of these outlier 
factors in determining the influence of observations 
on the QMLE of the GARCH model, simple 
regressions are performed where the QMLE are 
regressed on these factors. The QMLE is obtained 
under the assumption of conditional normality.   
 
The empirical analysis is based on the daily 
logarithmic returns of the Dow Jones Industrial 
Average (DJIA) and the National Association of 
Securities Dealers Automated Quotation (Nasdaq) 
Composite Index. The sample consists of 2500 
observations for the period 24 August 1990 to 28 July 
2000.    

 
The relationship between excess kurtosis (Ke) and 
the outlier factor (cvb) for Nasdaq is approximately 
S-shaped and is steepest when the outlier factor is 
between 100 and 1000. Outside this region, the 
relationship is relatively flat. Hence, when an 
observation has an outlier factor that exceeds 100, it 
becomes increasingly difficult to capture, as 
demonstrated by the exponential increase in excess 
kurtosis.9 

 
3. EMPIRICAL RESULTS 
3.1 Single Additive Outlier 
The influence of an observation on the QMLE of the 
mean-variance model depends on its degree of 
outlier-ness from the preceding neighbourhood, that 
is, whether or not it can be scaled adequately by . 
This outcome depends on: (i) whether conditional 
volatility immediately preceding the extreme 
observation is sufficiently large

th

2
1−t

ith +

7; and (ii) whether it is 
preceded by a sufficiently large observation ( ). 
When either of these conditions is met, its degree of 
outlier-ness (cvb) is expected to be small. Thus, a 
slight increase in either the α or β estimate is likely to 
lead to a sufficient increase in h  so as to capture the 
observation. A mitigating factor will be whether or 
not the observation persists, otherwise the effect of 
inliers generated as a result of an increase in  
will outweigh the effect of outliers. For example, if 
the observation has a high degree of outlier-ness with 
respect to its preceding observations and its volatility 
does not persist, the α and β estimates may be biased 
downwards so as to reduce the number of inliers.

ε

t

8 

 
The results confirm the finding that a major 
determinant of the influence of an observation on the 
QMLE is its degree of isolation with respect to its 
preceding neighbours (cvb) rather than its absolute 
size. For example, when a global outlier is inserted at 
position 2435, it has no significant influence on either 
the QMLE or the excess kurtosis of the standardised 
residuals, implying that it can be adequately captured 
by the model. When the same observation is inserted 
at position 1805, it causes a substantial increase in 
the α estimates and in excess kurtosis. The only 
difference between these two observations is the 
degree of clustering with their immediate 
neighbourhoods. That is, the global outlier inserted at 
position 2435 has a substantially smaller outlier 
factor (cvb = 4.95) than the global outlier inserted at 
position 1805 (cvb = 119.1). These results also show 
that the influence of an observation on the QMLE  

                                                 
                                                 
9 As expected, there is a very strong negative relationship between 
the maximized log-likelihood (MLL) values and the excess 
kurtosis (Ke) of the standardised residuals: the greater is the excess 
kurtosis, the stronger is the violation of normality, the poorer its fit, 
and the lower are the MLL values. 

7 This is the case when an extreme observation appears several 
steps beforehand, thereby causing masking effects. 
8 This is because an increase in either the α or β estimate will not 
be sufficient to capture the extreme observation. 

  



increases exponentially with the logarithm of the 
outlier factor. In general, observations with an outlier 
factor less than 10 have very little influence on the 
QMLE and on the excess kurtosis.   
 
Generally, there is a very strong negative univariate 
relationship between: (i) α and β estimates; (ii) (α+β) 
estimates and excess kurtosis; and (iii) (α+β) 
estimates and cvb.  There is no obvious relationship 
between the α or β estimates and either cvb or excess 
kurtosis.   
 
The results of the multiple regressions show that, for 
both series, excess kurtosis (Ke) is strongly 
negatively related to the α, β, and (α+β) estimates 
and to vratio, and positively related to cva. 
Furthermore, the (α+β) estimates are negatively 
related to both the α estimates and cva, and positively 
related to both the β estimates and vratio. This 
implies that the less persistent is the outlier (as 
measured by vratio), the smaller are the α+β 
estimates. Collectively, the results suggest that: (i) 
global outliers are captured by increasing the α or β 
estimates; and (ii) more persistent outliers are more 
easily accommodated.     
 
Although the Nasdaq series are substantially more 
volatile (40%) than the DJIA series, the regression 
results are qualitatively quite similar. For DJIA, the α 
estimates are negatively related to cvb, while the β 
estimates are negatively related to cva. However, 
when both outlier factors are included in the 
regression equation, the α and β estimates become 
negatively related to cva. This suggests that the less 
persistent is the outlier, the smaller are the α and β 
estimates, which is consistent with the results for the 
(α+β) estimates.  
 
Presumably, the cost in generating multiple inliers (at 
subsequent positions) is larger than the benefit of 
capturing a single outlier. When (α+β) is included in 
the regression equations for both α and β, α is 
marginally significant and negatively related to cvb, 
whereas β is marginally significant and positively 
related to cvb. None of the GARCH parameters is 
now significantly related to cva. These results may be 
explained by the fact that cva and (α+β) are 
significantly negatively correlated with each other (-
0.469). Both the α and β estimates are strongly 
positively related to vratio, irrespective of whether 
the β and α estimates are included in the regression 
equations, respectively. However, after controlling 
for the effects of (α+β), α becomes significantly 
negatively related to vratio, while the reverse is true 
for β. Hence, there are substantial trade-offs between 

the α and β estimates, which are primarily driven by 
the persistence of the outlier. 
 
For both series, ω is positively related to both cva and 
the α estimates, and negatively related to both the 
(α+β) estimates and vratio. This suggests that the 
QMLE may capture non-persistent outliers by 
increasing the conditional volatility through 
increasing the ω estimates. 
 
In conclusion, the results confirm our intuition that 
the degree of outlier-ness of an observation is a 
strong determinant of its degree of influence on the 
QMLE of the conditional volatility model. Moreover, 
there appears to be a strong trade-off between the α 
and β estimates, and  between outliers and inliers. In 
particular, the estimator attempts to capture local 
outliers by increasing the α or β estimates, depending 
on the degree of persistence. When the observation is 
isolated from its preceding and proceeding 
neighbours (with large cvb and cva values), the 
estimator reduces the number of inliers by decreasing 
the (α+β) estimates through reducing both the α and 
β estimates.   
 
3.2 Volatility of the Series 
The impacts of a global outlier on the QMLE are also 
expected to be determined by the features of the data 
that are further from the observation. There are two 
main reasons for this result, namely: (i) all 
observations contribute to the GARCH estimates and 
determine whether an outlier can be captured through 

; and (ii) the impacts of a global outlier on the 
QMLE will affect the volatility forecasts of all other 
observations. 

th

 
In order to examine the impacts of the features of the 
remaining data on the influence of a global outlier, 
the rolling window methodology is employed. For 
Nasdaq, a single global outlier (10σ) is inserted at a 
position (1245) where it has a high local outlier factor 
(cvb = 351.2, cva = 390.22).   
 
The results show that the QMLE of the conditional 
variance model are affected by the inserted outlier as 
soon as it appears in the estimation period. In 
particular, there is: (i) a sharp decrease in the α 
estimate (from 0.119 to 0.065); (ii) a sharp increase 
in the β estimate (from 0.726 to 0.938); (iii) a sharp 
increase in the (α+β) estimate (from 0.845 to 1.003); 
and (iv) a sharp increase in excess kurtosis (from 
5.307 to 22.855). When the outlier is eventually 
purged from the estimation period: (i) the α estimate 
abruptly decreases (from 0.186 to 0.162); (ii) the β 
estimate increases (from 0.794 to 0.823); (iii) the 

  



Table 1. The ten largest local outliers in volatility  (α+β) estimate increases (from 0.979 to 0.985); and 
(iv) excess kurtosis decreases (from 6.337 to 4.062). 
These results suggest that the influence of the 
inserted outlier on the GARCH estimates remains 
substantial, even when it appears at the start of the 
estimation period.  

 
Nasdaq     
 Cvb                 y_t*     ηt    

63.568  -0.04337 (-3.284) -6.268  
38.079  -0.02604 (-1.972) -4.488  
34.702  -0.07274 (-5.509) -5.859   
31.228  -0.03710 (-2.810) -4.840 For the original data, as the window slides forward 

into a period of higher conditional volatility, the α, β 
and (α+β) estimates increase substantially in size. 
The result is a lower excess kurtosis for the 
standardised residuals. Generally, as more volatile 
data enter the estimation period, the influence of the 
inserted outlier on the β and (α+β) estimates 
decreases substantially, whereas its influence on the 
α estimate remains large.   

31.073  -0.05714 (-4.327) -4.835 
29.470  -0.02937 (-2.224) -4.322  
22.050  -0.01485 (-1.125) -2.251 
19.890  -0.01907 (-1.444) -2.541 
19.800   0.02467 (1.868)  2.611  
19.696  -0.08954 (-6.780) -4.166 
 
DJIA    
 Cvb                  y_t*     ηt    
119.130  -0.04006 (-4.311) -6.650   
34.030  -0.07455 (-8.022) -6.698  In conclusion, the influence of a local outlier on the 

GARCH estimates depends not only on the 
conditional volatility of its local surroundings, but 
also on the conditional volatility of the other 
observations. In particular, the more volatile are the 
data, the larger are the QMLE of the parameters of 
the conditional variance model, the better can the 
outlier be captured by the model, and the less 
influential are outliers. 

32.530  -0.02456 (-2.643) -4.698  
31.630   0.02958 (3.183)  3.641  
27.160   0.01274 (1.371)  1.953  
24.750  -0.02016 (-2.169) -3.080  
24.670  -0.01549 (-1.667) -2.603  
22.930  -0.01727 (-1.858) -2.288  
22.290  -0.01871 (-2.013) -3.636  
20.800   0.04466  (4.806)  4.913 
*The size of the observations in terms of their distance in standard 
deviations from the mean is given in parentheses.   
 3.3 Filtering Local Outliers 
Interestingly, a significant majority of global 
outliers11 does not appear as outliers in the 
standardised residuals. For example, for the volatile 
Nasdaq series, only 7 of a total of 39 global outliers 
appear as outliers in standardized residuals.12 For 
Nasdaq, only 6 of a total of 44 global outliers have a 
local outlier factor greater than 10, whereas 19 of a 
total of 20 outliers in the conditional distribution 
have a local outlier factor greater than 10.13 This 
implies that the local outlier factor, as measured by 
cvb, is an accurate indicator of an observation’s 
outlier-ness in terms of its likelihood of becoming an 
outlier in the standardised residuals. 

 
Without any formal method for detecting the position 
of random jumps in the conditional variance, we 
proceed with an informal method of outlier filtering. 
In this section, we examine whether down-weighting 
those observations that have a local outlier factor 
(cvb) greater than some arbitrary set critical value (c) 
can lead to improvements in estimation.  
 
We proceed by down-weighting those observations 
that have a local outlier factor that exceed some 
preset threshold level.10 This yields the 
uncontaminated series. The larger is the threshold 
level, the greater is the probability that the 
observation is generated by a process that is different 
from GARCH.  The following method of adjustment 
is used:  

 
It is also worth noting that the majority of 
observations that can be considered as outliers in the 
standardised residuals (that is, have a local outlier 
factor larger than 10) have a negative sign. For 
example, for Nasdaq, 19 of 20 outliers (95%) in the 
standardised residuals are negative, while for DJIA, 
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11 For convenience, in this section we consider observations that 
are more than 3 standard deviations removed from the sample 
mean global outliers. 

For purposes of comparison, we also apply the Chen 
and Liu (1993) filter to the residuals of the 
GARCH(1,1) model. The ten largest local outliers are 
listed in Table 1.  

12 For the DJIA series, 15 of a total of 30 global outliers in the 
unconditional returns are classified as global outliers when 
standardised by their conditional volatility.  13 For DJIA, 12 of a total of 30 global outliers have a local outlier 
factor greater than 10, whereas 24 of a total of 26 outliers in the 
conditional distribution have a local outlier factor greater than 10.  

                                                 
10 The threshold values used are 5, 10, 20 and 30. 

  



20 of 26 outliers (77%) in the standardised residuals 
are negative. Similarly, for both series, 70% of the 
observations that have a local outlier factor greater 
than 10 are negative. In contrast, the proportion of 
global outliers that is negatively or positively signed 
is approximately equal.  
 
It is important to note that local outliers can rarely be 
classified as belonging to the class of the largest 
events. For example, for Nasdaq (DJIA), only 12% 
(29%) of the observations with a local outlier factor 
greater than 10 are larger than 3σ, with more than 
two-thirds (one-third) being smaller than 2σ.  Most of 
the observations with a local outlier factor greater 
than 10 belong to the least volatile periods in the 
series (1990-1995), implying that bad news, rather 
than good news, is more likely to arrive unexpectedly 
and during quiet periods.   
 
The local outlier factor seems to be an effective way 
of identifying those observations that are likely to 
contribute significantly to excess kurtosis and have a 
substantial influence on the QMLE. As an example, 
for Nasdaq (DJIA), 38% (50%) of the observations 
with a local outlier factor greater than 10 are outliers 
in the standardised residuals. For Nasdaq (DJIA), the 
6 (3) observations that have the largest tη  values 
correspond to the 6 (3) observations with the largest 
local outlier factors. Overall, only 4 of 46 
observations with the largest tη values have a local 
outlier factor less than 10. 
 
Although not reported in detail here, the results for 
the QMLE of GARCH(1,1) and GARCH-t for 
Nasdaq for the original and adjusted data show that 
the residual kurtosis can be reduced substantially by 
down-weighting just a few (7) local outliers. 
Furthermore, when a large number of observations 
with a high outlier factor are down-weighted, the net 
impact on the α and β estimates is only marginal. In 
contrast, the Chen and Liu (1993) filter leads to 
substantially decreased α estimates and increased β 
estimates. This finding is consistent with the fact that 
the Chen and Liu filter identifies global outliers 
which, by definition, are very large in magnitude. 
Since such global outliers are frequently clustered 
with extreme observations, their local outlier factor is 
typically small. As the marginal influence of local 
outliers on the QMLE's of the conditional variance 
can be of either sign, the net impact of filtering a 
large number of these outliers on the QMLE of 
GARCH is generally quite small.  
 
A major benefit of filtering local outliers is that there 
are substantial gains in efficiency, as indicated by the 

markedly larger t-ratios for both the α and 
βestimates. This contrasts with the results of the 
Chen and Liu (1993) filter. The findings of the 
outlier-robust GARCH-t model are closer to that of 
the Chen and Liu (1993) filter than that of the local 
outlier filter.     
 
As expected, down-weighting local outliers has no 
substantial impacts on the forecast errors. This is 
consistent with the findings that: (i) local outliers are 
frequently small observations; and (ii) down-
weighting a large number of local outliers has no 
significant or consistent influence on the GARCH 
estimates.     
 
4. CONCLUSION 
In this paper we proposed the notion of a local outlier 
and the degree of outlier-ness for volatility 
modelling. It was found that the most obvious 
(global) outliers are not necessarily the most 
influential observations as they are often clustered, 
indicating ARCH effects rather than isolated outliers. 
In particular, we showed that local outliers rather 
than global outliers have significant impacts on the 
GARCH estimates. Moreover, it was shown that 
identifying and filtering local outliers may lead to a 
substantial improvement in the efficiency of the 
GARCH estimates.   
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