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Abstract: In an effort to improve the small sample properties of GMM, a number of alternative estimators have
been suggested. These include Empirical Likelihood (EL) and Exponential Tilting (ET) estimators. This paper
compares conventional GMM estimator to Empirical Likelihood (EL) and Exponential Tilting estimators when
the number of moment conditions increases with the number of observations. The estimators are subject to a
Monte Carlo investigation using the following specification. A linear equation includes endogenous explana-
tory variables and there exist a number of instrumental variables. The number of the instrumental variables is
increased as the number of observations is increased. The main findings of the experiments show the following.
Small sample biases of EL and ET are considerably smaller than GMM if the number of moment conditions is
less than 12–15% of the number of observations. When the number of the moment conditions exceed 12–15%
of the number of observations, small sample biases of EL and ET increase almost linearly as the number of
moment conditions increase and the growth rates of the biases are greater than the one of GMM. The small
sample bias of bias corrected GMM (Newey and Smith 2001) is always the same or smaller than the biases of
other estimators. The standard deviations of GMM and bias corrected GMM estimators are decreased as the
number of moment conditions is increased. The standard deviations of EL and ET estimators, however, are
increased when the number of moment conditions exceeds 12–15% of the number of observations.
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1 INTRODUCTION
In the econometric literatures, the generalized
method of moments (GMM) estimation method has
been quite popular in the past decade. This ap-
proach has an attractive feature that it has rather
broad applicability and it is easily implemented in
statistical analyses. However, it has been known
that there is a serious bias problem in the GMM es-
timation when there are many instruments in econo-
metric models.

In recently, Empirical Likelihood (EL) and Expo-
nential Tilting (ET) estimators have been proposed
as alternative to the GMM method and have been
gotten some attention in the statistical and econo-
metric literatures. These methods give asymp-
totically efficient estimator in the semi-parametric
sense and improve the serious bias problem known
in the GMM method when the number of instru-
ments is large in econometric models.

Newey and Smith (2001) studied higher order prop-
erties of generalized empirical likelihood (GEL) es-
timator by the stochastic expansion method and find
that EL and ET have two theoretical advantages.
First, asymptotic bias of EL and ET do not grew
with the number of moment conditions, while the
bias of the GMM does. Second, the bias corrected

EL is higher efficient relative to the bias corrected
GMM.

In econometric modeling, relatively large numbers
of moment conditions are often used and infinite
moment conditions are available in same cases, i.e.
Carrasco and Florens (2000) and Press (1972).

This paper examines the small sample properties of
Empirical Likelihood (EL) estimator with relatively
large numbers of moment conditions and compares
conventional GMM estimator to Empirical Likeli-
hood (EL) and Exponential Tilting estimators when
the number of moment conditions increases with the
number of observations.

The rest of the paper is organized as followings.
Section 2 provides brief explanations of the model
and the estimators. Section 3 presents the design of
Monte Carlo experiments. The results are presented
in Section 4. Some conclusions are given in Section
5.

2 THE MODEL AND ESTI-
MATORS

Let zi, (i = 1, . . . ,n), be i.i.d. observations on a data
vector z. Also, let θ be a q×1 parameter vector and
g(z,θ) be an m× 1 vector of functions of the data
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observation z and the parameter, where m ≥ q. The
model has a true parameter θ0 satisfying the mo-
ment condition

E[g(z,θ0)] = 0, (1)

where E[.] denotes expectation taken with respect to
distribution of zi.

The standard two-step GMM solution to this esti-
mation problem (1) is to estimate θ0 as the solution

min
θ

(

1
n

n

∑
i=1

g(zi,θ)

)′

Ŵ−1

(

1
n

n

∑
i=1

g(zi,θ)

)

(2)

where Ŵ is a consistent estimator of
E[g(zi,θ0)g(zi,θ0)

′].

A new alternative to GMM is Empirical Likelihood.
The idea is due to Art Owen (1988, 2001) and has
been extended to the GMM context by Qin and
Lawless (1994). It provided a non-parametric ana-
log to likelihood estimation suitable for the GMM
context. The idea is the follows. The distribution
of z may be well approximated non-parametrically
by multinomial distribution which places probabil-
ity pi at each observations zi, with the constraints
that ∑n

i=1 pi = 1 and ∑n
i=1 pig(zi,θ) = 0. The latter

constraint imposes the moment condition (1).

The Empirical Likelihood (EL) estimator for the
vector of unknown parameter θ in (1) is defined as
the solution to

max
θ,p1,...,pn

n

∑
i=1

log pi (3)

s.t.
n

∑
i=1

pig(zi,θ) = 0,
n

∑
i=1

pi = 1,∀i pi > 0.

The log likelihood statistic −∑n
i=1 log(npi) could be

viewed as a measure of distance of (p1, p2, . . . , pn)
from the empirical measure (1/n,1/n, . . . ,1/n).
Other distances could be used for constructing an-
other estimator. The Exponential Tilting (ET) esti-
mator introduced by Kitamura and Stutzer (1997)
and Imbens, Spady, and Johnson (1998) uses the
Kullback-Leibler Information Criterion (KLIC) dis-
tance instead of the log likelihood. The ET estima-
tor is defined as the solution to

min
θ,p1,...,pn

n

∑
i=1

pi log pi (4)

s.t.
n

∑
i=1

pig(zi,θ) = 0,
n

∑
i=1

pi = 1,∀i pi > 0.

All of these three estimators are consistent, asymp-
totically normal, and have the same asymp-
totic covariance matrix (G′Ω−1G)−1 where G =

E[∂g(zi,θ0)/∂θ] and Ω = (E[g(zi,θ0)g′(zi,θ0)])
−1.

Small sample properties of these estimators, how-
ever, might be different each other. Newey and
Smith (2001) have argued that ET and EL estima-
tors have smaller bias than GMM estimator when
the number of moment conditions, m, is large and
the covariance matrix of the bias corrected EL esti-
mator coincides the one of the maximum likelihood
estimator with in the second order expansion.

3 Monte Carlo Design
In order to investigate the finite sample properties
of GMM, EL, and ET estimators with a number of
moment conditions, we have done a set of numerical
simulations.

For this purpose, we set a simple linear model

yi = β0 +β1xi1 +β2xi2 +ui. (5)

ui is n.i.d (0,1) and xi = (xi1,xi2) is correlated with
ui in the following way

xi1 = wi1 +0.5ui (6)

xi2 = wi2 +0.5ui (7)

where wi = (wi1,wi2) is n.i.d with mean (0,0) and
covariance matrix

(

1 0
0 1

)

.

For setting up the m moment conditions, the fol-
lowing instrumental variables are used in the exper-
iments

vik =

{

wi1 + eik if k is odd
wi2 + eik if k is even

(8)

where eik is uncorrelated n.i.d (0,1).

The moment conditions for estimating θ0 =
(β0,β1,β2) are

g(zi,θ) =













yi −b0−b1xi1 −b2xi2

(yi −b0−b1xi1 −b2xi2)vi1

(yi −b0−b1xi1 −b2xi2)vi2

. . .
(yi −b0−b1xi1 −b2xi2)vim













where zi is zi = (yi,xi1,xi2,vi1,vi2, . . . ,vim). True pa-
rameter θ0 = (β0,β1,β2) = (1,1,1) is chosen for the
true parameter values.

The following combinations of the number of obser-
vations, n, and the number of moment conditions,
m, were examined.

• n = 50 and m = 5,7,9,11,13,15,25.

• n = 100 and m = 5,7,9,11,13,15,25,45.



• n = 200 and m = 5,7,9,11,13,15,25,45,65.

The number of replication was 5000 for all cases.

On the above settings, we compared small sample
biases and standard deviations of GMM, EL, and
ET estimators. In addition, we examined finite sam-
ple properties of bias corrected GMM, EL, and ET
estimators that were described in Newey and Smith
(2001).

4 SIMULATION RESULTS
The results were summarized in Figure 1 to 9. In all
figures, horizontal axes were the number of moment
conditions and vertical axes indicated biases or stan-
dard deviations. Each line in Figures had a label
something like el50-bc, the el indicates EL estima-
tor (et is Exponential Tilting and gmm is GMM),
50 implies the number of observation is 50, and bc
denotes bias corrected version of the estimator.

Figure 1 reports biases of constant term, b0, when
the number of observations is 50. As shown in the
figure, biases were negligible for all estimator and
all the numbers of moment conditions. It was also
the same in the case of n = 100 and n = 200, so
these two cases were not reported.

Figure 2 – 4 displayed the biases of the slope co-
efficient, b1. As shown in the figures, the bias of
GMM estimator increased as the number of moment
conditions increased in all cases. Small sample bi-
ases of EL and ET are almost zero if the number of
moment conditions is less than 12–15% of the num-
ber of observations. When the number of the mo-
ment conditions exceed about 12–15% of the num-
ber of observations, small sample biases of EL and
ET increase almost linearly as the number of mo-
ment conditions increase and the growth rates of bi-
ases were much faster than GMM. The small sam-
ple bias of bias corrected GMM (Newey and Smith
2001) is always the same or smaller than the biases
of other estimators, and considerably smaller than
other estimators when the number of moment con-
ditions exceed about 12–15% of the number of ob-
servations. It might be noteworthy that ET estima-
tors had smaller biases than EL estimators did.

Figure 5 and 6 represent the standard deviations of
each estimator of the constant term b0 when the
numbers of observations are 50 and 200, respec-
tively. The standard deviations of EL and ET es-
timators were increased when the number of mo-
ment conditions rose above 12–15% of the number
of observations. The standard deviations of GMM
estimator were almost independent of the number of
observations.

Figure 7 – 9 represent the standard deviations of
each estimator of the slope coefficient b1 when the

numbers of observations are 50, 100, and 200, re-
spectively. Since more a lot of moment conditions
imply more a lot of information, it is expected that
the standard deviations of estimators will be de-
creased as the number of moment conditions in-
creased. The standard deviations of GMM and
bias corrected GMM estimators are decreased as the
number of moment conditions is increased as ex-
pected. The standard deviations of EL and ET esti-
mators, however, are increased when the number of
moment conditions exceeds 12–15% of the number
of observations.

Figure 10 to 12 are the distribution of EL estimator
of the slope parameter b1 when the number of ob-
servations is 100 and the numbers of moment con-
ditions are 5, 25 and 45, respectively. It could be
observed that the distribution of b1 was shifting to
right and became flatter as the number of moment
conditions increased.

To sum up the results of the simulations,

• The biases of EL and ET are very small until
the number of moment conditions is less than
12–15% of the number of observations. On
the other hand, the bias of GMM increases al-
most linearly as the number of moment con-
ditions increases.

• when the number of moment conditions ex-
ceeds 12–15% of the number of moment con-
ditions, the bias of EL and ET increases
rapidly than the bias of GMM. The bias of the
bias corrected GMM is the same or smaller
bias than the ones of other estimators in all
the numbers of moment conditions.

• the standard deviation of GMM decreases as
the number of moment conditions increases.
The standard deviations of EL and ET in-
crease as the number of moment conditions
increases when the number of moment condi-
tions exceeds 12–15% of the number of ob-
servations.

5 CONCLUDING REMARKS
It has been pointed out a number of times that the
GMM estimators have serious small bias problem
when the number of moment conditions is large
in econometric models (Hansen, Heaton and Yaron
1996). Information theoretic estimators, like em-
pirical likelihood (EL) and exponential tilting (ET)
estimator, have been expected to improve the small
sample bias problem. Our result of the Monte Carlo
simulations, however, draws a different picture. The
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Figure 1: Bias of b0 n=50 Figure 2: Bias of b1 n=50

biases and the standard deviations of EL and ET es-
timators are lager than ones of GMM estimators at
least the number of moment conditions is large.

This paper examines small sample properties of
GMM, EL and ET estimators when the number of
moment conditions was relatively large. Our Monte
Carlo experiments shows that EL and ET estima-
tors have small biases when the number of moment
conditions are about less than 12–15% of the num-
ber of observations. However, the number of mo-
ment conditions are increased, the biases and the
standard deviations of ET and EL estimators also
increased. The bias corrected GMM has best small
sample properties with respect to bias and standard
deviations in our linear model settings.

The asymptotic theory of EL and ET estimators im-
plicitly assumes that the origin was included in inte-
rior of the convex hull of g(zi,θ0) i = 1, . . .n. With
a finite sample, this convex hull conditions might
be violated with a positive probability. This viola-
tion might explain the bad small sample properties
of EL and ET estimators when the number of mo-
ment conditions was large.
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Figure 3: Bias of b1 n=100 Figure 4: Bias of b1 n=200
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Figure 5: Standard Deviations of b0 n=50 Figure 6: Standard Deviations of b0 n=200

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

number of moment conditions

std of b1

el50
el50-bc
gmm50

gmm50-bc
et50

et50-bc

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45

number of moment conditions

std of b1

el100
el100-bc
gmm100

gmm100-bc
et100

et100-bc

Figure 7: Standard Deviations of b1 n=50 Figure 8: Standard Deviations of b1 n=100
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Figure 9: Standard Deviations of b1 n=200 Figure 10: Distribution of EL estimator of b1
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Figure 11: Distribution of EL estimator of b1
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