
‘Simple’ differential evolution for beef model
optimisation

D. G. Mayera, B. P. Kinghornb and A. A. Archerc

aQueensland Department of Primary Industries, Brisbane. david.mayer@dpi.qld.gov.au

bSygen Chair of Genetic Information Systems, University of New England, Armidale.

cCRC for Cattle and Beef Quality, University of New England, Armidale.

Abstract: Differential evolution (DE) is a comparatively simple variant of the broad class of evolutionary
algorithms, which encompass genetic algorithms, evolution strategies, genetic programming and hybrids of
these. DE has only three operational parameters, and can be coded in 20 lines of pseudo-C. Investigations of
its performance in the optimisation of a challenging 70-dimensional beef property model indicate that it
performs at least as well as Genial (a real-value genetic algorithm), which has been the preferred operational
package thus far. Despite DE’s apparent simplicity, the interacting key evolutionary operators of mutation
and recombination are present and appear to be effective. In addition, DE has the advantage of incorporating
a form of self-adapting mutation, as found in evolution strategies, without the burdening overhead of
doubling the dimensionality of the search-space. These processes are illustrated, and model optimisations
totalling two years of Sun workstation computation are presented. These results show that the baseline DE
parameters work effectively, but can be improved in two ways – firstly, the population size does not need to
be overly conservative, and smaller populations can be considerably more efficient; and secondly, the
periodic application of extrapolative mutation counteracts the contractive nature of DE’s intermediate
arithmetic recombination in the latter stages of the optimisations. This provides an escape mechanism to
prevent sub-optimal convergence. With its ease of implementation and proven efficiency, DE is ideally suited
to both novice and experienced users wishing to optimise their simulation models.

Keywords: evolutionary algorithm, beef model, optimisation, differential evolution

1. INTRODUCTION

Systems research and modelling have now
become mainstream techniques in many fields,
including agriculture. The modelling steps of
system definition, development, programming,
verification, validation, and model investigation
have been well documented (Bratley et al., 1987),
and these steps have repeatedly proven to be
useful in themselves, to obtain an understanding
of the dynamics of the system under study.
Logically, these models can also be taken to the
next step, which is formal optimisation. This task
becomes increasingly difficult as the size and
complexity of the model increases (Meadows and
Robinson, 1985).

To conduct this optimisation, an objective
function must first be constructed, with the
optimisation algorithm then trialing various
values of the input parameters to search for the
best (optimal) combination. This objective
function is usually taken as some overall
economic measure of the system, for example the
gross margin or profit of a farming enterprise or

system. Non-economic measures can also be
optimised (e.g. total farm production, or pesticide
or nutrient runoff), however the optimal values of
these will usually occur when using maximal (and
prohibitively expensive) inputs. When there are
potentially competing requirements in the
simulated system (e.g., a requirement to maximise
profit whilst simultaneously minimising soil loss),
a compromise of these is usually considered via a
weighted objective function. Alternately, one of
the range of more complex Pareto multi-criteria
evaluation methods (Coello Coello et al., 2002)
can be used for the objective function to be
optimised.

A large range of optimisation methods and
algorithms can be found in the mathematical,
computing, operations research and applied
literature. Agricultural models generally pose
some of the more difficult problems for these
methods - these complex models cannot be
numerically differentiated; the ‘curse of
dimensionality’ often applies to give very large
and complex search-spaces; they typically have

non-smooth response surfaces (including sharp
cliffs when the system is over-utilised, and
collapses both biologically and economically);
multiple local optima (in overall economic terms)
can confound the search; and epistasis (the
interacting effects of the input variables) is
usually pronounced.

This range of problems means that only the most
efficient optimisation methods are likely to
succeed with ‘real-world’ scale agricultural
models. In particular, the somewhat dated (but
still widely used) multitude of gradient methods
are poorly suited for this task. Similarly,
deterministic direct-search methods (including the
robust Simplex method, Nelder and Mead, 1965)
also struggle here. Of the more modern stochastic
algorithms, tabu search (Glover et al., 1993) and
ant-colony methods are well suited to
combinatorial optimisation problems, but not to
the optimisation of multi-dimensional models.
Similarly, simulated annealing (Kirkpatrick et al.,
1983) has proven to be thorough and reliable, but
is too inefficient to be of practical use with larger
problems (Mayer, 2002). This leaves evolutionary
algorithms as the only practical methodology.

Evolutionary algorithms encompass a range of
different ‘nature-inspired’ methods, including
genetic algorithms (usually binary representation,
with recombination the primary operator),
evolution strategies (real-value representation,
with mutation the primary operator), and genetic
programming (variable-length representation,
more usually aimed at developing equations and
programs). Whilst independently developed for a
number of years, these sub-strains of evolutionary
algorithms have now effectively merged, with
each adopting the more favorable features of the
others. Differential evolution (DE) is one such
hybrid.

In keeping with the large range of potential
operators (e.g., controlling the many types and
rates of selection, crossover and mutation), most
optimisation software has tended to be ‘large’.
This poses potential problems for users, in that
they cannot be sure that these particular operators
are correctly coded and actually doing what they
are supposed to be doing. Table 1 lists four
examples of algorithms which can be easily
obtained.

DE is simpler to code, implement and use than
other optimisation methods (Table 1). The
following sections introduce its methodology, and
put these into context in comparison with other
evolutionary algorithms. A large, complex beef
property model is then used as a case study for
these methods, and general conclusions regarding
relative efficiency and performance are drawn.

Table 1. Types and sizes of shareware
optimisation routines (SA = simulated annealing,
GA = genetic algorithm, ES = evolution strategy).

Package Type Code Lines

ASAa (adaptive) SA C 8,806

Genesisb Binary GA C 2,829

Genialc Real-value
GA or ES

Fortran 3,532

DEd Real-value GA C 20
a http://www.ingber.com/#ASA
b http://www.aic.nrl.navy.mil/galist/src/
c http://hjem.get2net.dk/widell/genial.htm
d http://www.icsi.berkeley.edu/~storn/code.html

2. DIFFERENTIAL EVOLUTION

Details of DE, including the 20-line pseudo-C
code, are listed in Storn and Price (1997) and
Price and Storn (1997). On test functions, DE has
markedly outperformed both simulated annealing
and the Simplex method, and was equal or
superior to some common evolutionary
algorithms (Storn and Price, 1997). A number of
rather complex versions of DE are available on
the DE website (see address in Table 1 footnote),
and for general use we have included a simplified
and commented Fortran version in Appendix 1 of
this paper.

The concept of DE is simple. Firstly, a population
of candidate members (trial management
strategies for the model) is established, usually at
random. Each population member is characterized
by its fitness (its value on the target objective
function). For each population member in turn, a
challenger is constructed. If this challenger has
superior fitness, it will replace the population
member in the next generation. To construct this
challenger, three other population members are
chosen at random. We can label these as a, b and
c. Each parameter (management option, as coded
on to DE’s alleles) is then addressed in turn. With
a probability equal to the crossover rate (CR), the
parameter is simply adopted from the population
member that the challenger is challenging.
Otherwise, a new parameter value is constructed
as the value for member a plus the mutation
factor (F) times the difference between the values
for b and c. Successful challengers replace their
respective population members, and, together
with surviving members, constitute a new
generation with higher mean fitness. The process
continues over sufficient generations to achieve
convergence close to an optimal solution, with the
fittest solution being chosen.

One possible reason that DE works so well is that
mutation is driven by differences between
parameter values of contemporary population
members, giving an appropriate reduction in
magnitude as the optimisation proceeds and
convergence is approached. This parallels the
successful approach used in evolution strategies,
where the mutation variances are self-tuning. To
achieve this feature the evolution strategies take
these standard deviations or variances (one per
parameter being optimised) along as extra
parameters to be optimised. This effectively
doubles the dimensionality, and hence the search-
space, of each problem. DE’s approximate
approach does not require this doubling of the
problem’s size, and thus appears to be a far more
efficient implementation of self-adapting
mutation.

3. OPERATIONAL PARAMETERS

For all evolutionary algorithms, the operational
parameters control the balance between
exploitation (using the existing material in the
population to best effect) and exploration
(searching for better genes). These operators
frequently interact with each other (Goldberg,
1989), and the optimal combinations are problem-
dependent, and can be difficult to find.
Fortunately, evolutionary algorithms have proven
to be quite robust across wide ranges of these
(Mayer, 2002). The key operators and parameters,
and their applications in DE, are as follows.

3.1 Population Size

Price and Storn (1997) recommended a
population size of 5 to 10 times the
dimensionality of the problem, and stated 4 as a
minimum value. In simulating crystal structures
via DE, Weber and Bürgi (2002) used a
population of 40 for a 7-dimensional problem (a
factor of 5.7). These values have certainly been
shown to work well in practice (Storn and Price,
1997), demonstrating that sufficient genetic
material is contained in the populations. However,
this could be using an excessive amount –
research with other evolutionary algorithms (also
using real-value coding) has produced best results
with factors between 1.5 and 2 (Mayer, 2002).
Values in this range could be more efficient, by
carrying only a sufficient number of population
members.

3.2 Selection of Parents

A large range of selection methods have been
used in the past, including Roulette-wheel (the

traditional choice for genetic algorithms), ranked,
scaled, Queen-bee, complete, truncation, and
tournament (where a size of two appears to be the
current standard). Fortunately, in practice all
forms appear to work well (Mayer, 2002). DE
uses complete selection (each parent is considered
in each generation), and this should perform
adequately.

3.3 Recombination

A number of studies on evolutionary algorithms
have shown recombination and mutation to have a
synergistic effect (Michalewicz and Fogel, 2000).
DE incorporates both of these into one operation
using a form of uniform crossover, albeit in a
somewhat more convoluted way than is normally
used. Recombination is controlled in DE by the
user-specified crossover rate (CR). For each
parameter in turn, either the parent’s allele is
used, or a mutated allele (rather than a second
parent’s, as is usually the case in evolutionary
algorithms). Storn and Price (1997) list CR values
of 0.1 for a thorough (but slower) optimisation, to
1.0 for speedier (but risky) convergence, with 0.5
being recommended. Previous evolutionary
algorithm studies have shown that most forms of
recombination work well, across quite a wide
range of rates, so 0.5 would appear an adequate
first choice.

3.4 Mutation

DE has no defined mutation rate, instead taking
this parameter as the flip-side of CR. Previous
studies have shown low (around 0.01) to high
(towards 1.0) rates to all be effective (Mayer,
2002). Using a CR of 0.5 gives a mutation rate of
0.5 also. Studies have shown that the exact form
of mutation applied is less critical than ensuring
that some form is present, to drive the
exploration.

DE’s unique form (which allows self-adaptation
of the mutation sizes as the optimisation
progresses) adds a scaled difference between two
random parents to a third parent. This is an
arithmetical form applied to each real-value
‘gene’ which may be intermediate or
extrapolative, depending on the scaling factor (F).
Storn and Price (1997) recommended an F of
between 0.4 and 1, with 0.5 as a good initial
choice. Investigations with DE (Kinghorn,
unpublished) have found that ‘pulsing’ F to a
larger amount, for example to 5.0, every few
generations has the effect of assisting the
optimisation process, as it induces extrapolative
mutation.

3.5 Replacement Strategy

DE uses generational replacement, with elitism
guaranteed in that the parents (in turn) are only
replaced if their direct competitor is superior (or
equal – this allows more genetic diversity to enter
the search). This operation may not be as efficient
as continuous deterministic replacement (as used
in other evolutionary algorithms), but should
suffice.

4. BEEF MODEL STUDY

The system simulated is a beef property in the
northern speargrass region of Queensland, tuned
to ‘average’ data from the Australian Bureau of
Statistics. A stochastic individual-animal model
(based on DYNAMA, a commercial herd
management package, as described in Holmes,
1995) was used, with a daily time-step over a ten-
year horizon. Further details of this model and
parameters can be found in Mayer et al. (2001).
The objective function is the ten-year
accumulated gross margin (sales less variable
costs), and there are 70 management options
covering stocking rates, mating and weaning
policies, and purchasing and culling decisions.
This 70-dimensional problem has a search-space
of the order of 10120.

Optimisations were run on a network of Sun
workstations under Unix. Each month of runtime
generates about 105 model runs, with each run
producing one value of the objective function.
The longest optimisation so far totalled 150,000
runs, well short of the 106 to 107 required to give
a high probability of finding the global optimum
(Mayer et al., 2001). The latter stages are
approaching convergence. In practical terms,
these numbers are all that is currently
computationally feasible, so any optimisation
algorithms which perform well here can be
recommended.

Genial has been the preferred evolutionary
algorithm for conducting investigative
optimisations of this system. Genial is a real-
value genetic algorithm or evolution strategy (we
have generally found the former implementation
to be superior) with a wide range of operational
parameters covering parent selection, replacement
strategy, recombination and mutation. The most
efficient of these optimisations used a
comparatively small population size (200), and
for this we had four replicates, using a range of
recombination and mutation rates and types. The
performance of these (Figure 1) shows little
practical difference between these replicates.
They all appear to be approaching convergence

(but, disturbingly, towards different optima) at
about 104 model runs, with only a few ‘minor’
lifts occurring after this.

Also marked on Figure 1 is one DE optimisation.
This used a population size of 250 (approximately
the same as for the Genial replicates). This is only
3.5 times the dimensionality of the problem,
whereas Storn and Price (1997) recommend a
multiplier of 4 as a minimum. This optimisation
had a crossover rate (and thus also mutation rate)
of 0.5. The mutation factor was mostly 0.5, with
an increase to 5.0 being applied every tenth
generation.

In the initial stages of these searches (up to and
past 104 runs), the Genial results have a clear
advantage over DE. However, DE keeps finding
improved solutions in the mid and latter stages.
There is one particularly notable ‘lift’ where the
DE optimisation obviously found a more
profitable region of the search-space to exploit.
Here, DE surpasses the Genial optimisations,
which are showing signs of sub-optimal
convergence (these were apparently converging to
different solutions, which is of obvious concern).
We attribute at least some of DE’s improvements
to the self-adapting form of mutation used (versus
the fixed types and rates as used in Genial), and
particularly to the periodic application of
extrapolative mutation to escape from sub-
optimal regions.

Figure 1. Performance of four replicates of Genial
(dashed lines) using a population size of 200, and
one of DE (solid line) with a population of 250.

Given the trend of higher efficiency with smaller
population sizes, we then trialed DE with a
population of 100 (only 1.4 times the
dimensionality of this problem; well below that
recommended by DE’s developers). Two

7. REFERENCES replicates were run – the first with extrapolative
mutation (as previously used), and the second
with this feature removed (using ‘standard’
interpolative mutation, but still with the self-
adapting feature).

Bratley, P., B.L. Fox and L.E. Schrage, A guide to
simulation, Springer-Verlag, New York,
1987.

 Coello Coello, C.A., D.A. Van Veldhuizen and
G.B. Lamont, Evolutionary algorithms for
solving multi-objective problems, Kluwer
Academic Publishers, 515pp., Boston,
2002.

Figure 2 shows that these optimisations were
quite successful – matching the Genial results in
the initial stages, and then surpassing both these
and the DE optimisation with a higher population
size (250). The best combination for DE thus far
is a population of 100 with extrapolative
mutation, however the replicate with standard
mutation is still running. We intend to take this
out to 2×105 model runs, to test its ‘longer-term’
performance.

Goldberg, D.E., Genetic algorithms in search,
optimization and machine learning,
Addison-Wesley, Reading, 1989.

Glover, F., E. Taillard and D. de Werra, A user’s
guide to tabu search, Annals of Operations
Research 41, 3-28, 1993.

Holmes, W.E., BREEDCOW and DYNAMA –
herd budgeting software package,
Queensland Department of Primary
Industries, Townsville, 1995.

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi,
Optimization by simulated annealing,
Science 220, 671-680, 1983.

Mayer, D.G., Evolutionary algorithms and
agricultural systems, Kluwer Academic
Publishers, 107pp., Boston, 2002.

Mayer, D.G., J.A. Belward and K. Burrage, Robust
parameter settings of evolutionary
algorithms for the optimisation of
agricultural systems models. Agricultural
Systems 69, 199-213, 2001.

Figure 2. Two ‘extreme’ replicates of Genial
(dashed lines) vs three DE optimisations (solid

and dash-dot; parameters as indicated on graph –
P for population size, M for mutation type).

Meadows, D.H. and J.M. Robinson, The
electronic oracle, Wiley, New York, 1985.

Michalewicz, Z. and D.B. Fogel, How to solve it:
Modern heuristics, Springer, Berlin, 2000.

Nelder, J.A. and R. Mead, A simplex method for
function minimisation, The Computer
Journal 7, 308-313, 1965.

5. CONCLUSIONS

DE is one of the more efficient evolutionary
algorithms available. It requires few operational
parameters, and these appear to be quite robust.
DE is thus well suited to both novice and
experienced users. In limited optimisations of
both test functions and systems models, DE has
performed as well as, or better than, a number of
large and complex evolutionary algorithms that
have been the recommended ‘standards’ up until
now.

Price, K. and R. Storn, Differential evolution, Dr.
Dobb’s Journal, April, 18-24&78, 1997.

Storn, R. and K. Price, Differential evolution – A
simple and efficient heuristic for global
optimization over continuous spaces,
Journal of Global Optimization, 11, 341-
359, 1997.

Weber, T. and H.-B. Bürgi, Determination and
refinement of disordered crystal structures
using evolutionary algorithms in
combination with Monte Carlo methods,
Acta Crystallographica A, 58, 526-540,
2002.

6. ACKNOWLEDGEMENTS

We are grateful to Meat and Livestock Australia
for funding, and Katherine Delaney for the
figures.

Appendix 1. Pseudo-FORTRAN Coding of Differential Evolution.
! Declare and initialise – INTEGERS are popsize {number of members in the population}, loci {number of
alleles that each member contains}, generation {current}, max_gens {maximum number of generations}, i, j,
k, a, b, c {counters}. REALS are score {value returned from model; to be optimised}, CR {crossover rate}, F
{mutation factor}, value(popsize) {score values for the current parents}, parent_allele(popsize,loci) {alleles
of the parents, initially generated at random and including a subroutine call to get scores for each},
progeny_allele(popsize,loci) {alleles of the progeny}, allele(loci) {temporary values, as created in DE}

do generation = 1, max_gens ! Loop for target number of generations

 do i = 1, popsize ! Loop for each population member

 1 call RANDOM_NUMBER(rand_num)
 a = INT(rand_num*popsize) + 1 ! Parent to be challenger’s template
 if (a.eq.i) go to 1
 2 call RANDOM_NUMBER(rand_num)
 b = INT(rand_num*popsize) + 1 ! Choose two more parents
 if (b.eq.i .or. b.eq.a) go to 2
 3 call RANDOM_NUMBER(rand_num)
 c = INT(rand_num*popsize) + 1 ! Parents used to construct challenger
 if (c.eq.i .or. c.eq.a .or. c.eq.b) go to 3 ! must all be different

 call RANDOM_NUMBER(rand_num)
 j = INT(rand_num*loci) + 1 ! Random start for loci cycle
 do k = 1, loci ! Loop for each loci
 call RANDOM_NUMBER(rand_num)
 if (rand_num.lt.CR .or. k.eq.loci) then ! MUTATION
 allele(j) = parent_allele(c,j) + F * (parent_allele(a,j) – parent_allele(b,j))
 else
 allele(j) = parent_allele(i,j) ! CROSSOVER
 end if
 j = j + 1
 if (j.gt.loci) j = j - loci
 end do ! End loop for each loci

call Ag_Model(loci, allele, score) ! Evaluate – run model with allele as inputs
 if (score.ge.value(i)) then
 value(i) = score ! If competitor is better, replace parent
 do j = 1, loci
 progeny_allele(i,j) = allele(j)
 end do
 else ! or
 do j = 1, loci
 progeny_allele(i,j) = parent_allele(i,j) ! Current parent carries thru to next generation
 end do
 end if

end do ! End loop for each population member

score = -9E15
 do i = 1, popsize ! Loop for the new population
 if (value(i).gt.score) then
 k = i ! k is index number of the best member
 score = value(k)
 end if
 do j = 1, loci
 parent_allele(i,j) = progeny_allele(i,j) ! Progeny become new parents
 end do
 end do ! End loop for new population
 write value(k), (allele(k, i), i=1, loci) ! Report best solution (or every few gens.)

end do ! End loop for target number of generations

