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Abstract:  Excessive catalyst emissions from Fluidized Catalytic Cracking Units (FCCU) during start up 
situations are common, and have been deemed 'normal' with little research conducted on determining their 
causes.  A simplistic model found to predict trends in emission rates under normal conditions has been 
expanded to better represent the actual processes inside an FCCU.  First and second order sensitivity analysis 
techniques are used to assess the interactions between various operational parameters, with a genetic 
algorithm used to optimize the operating conditions to minimise air emissions.  These 'key' parameters may 
then be altered to help manage both normal and start up emissions through operational changes.  It was also 
found that significant scale up issues arise with the use of the attrition models found in the literature. 
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1. INTRODUCTION 

The petroleum industry currently employs 
Fluidizing Catalytic Cracking Units (FCCU's) as 
the major tool in producing gasoline from crude 
oil.  FCCU’s typically consist of a rising main 
where the chemical reactions between catalyst and 
hydrocarbons occur, a reactor to separate the 
product and catalyst, and a regenerator to re-charge 
the used catalyst.  The regenerator is a fluidized 
bed used to combust coke from the used catalyst, 
with cyclones to remove particles from the flue gas 
stream before venting to the atmosphere.  The 
recharged catalyst then re-circulates through the 
rising main and the process is repeated (Kunii and 
Levenspiel 1991).  
 
In recent years, fine particle emissions from 
industry have been identified as important 
contributors to poor environmental and health 
standards across the United States (Johnson 2001).  
With increasing demands for cleaner air, catalyst 
emissions from FCCU's have the potential to 
impact significantly on the environmental 
efficiency of the overall refining operation (Rucker 
and Strieter 1992).  Currently, FCCU's are 
designed and operated in such a way as to 
maximise output and profitability of the refinery 
(Lin 1993).  With the lack of literature dealing 

with FCCU emissions, there is a need for the 
relationships between current operational strategies 
and air pollution to be better understood.  

 
2. METHODOLOGY 

MATLAB was used to extend a simplistic model, 
already developed and tested on FCCU emissions 
(Whitcombe et al. 2001 and 2002).  
The model comprised the essential processes 
inside the FCCU including fluidization, elutriation, 
entrainment and attrition, with model equations 
sourced from the literature.  
 
The aim of this paper is to further develop the 
model into a more realistic package, for use in 
modelling industrial emissions.  This will provide 
a simulation package of the FCCU, where the 
simulated emission can be studied in terms of 
system parameters. Emission results are then 
compared with observations from an operating 
FCCU, where the FCCU particle emissions during 
a start up period were identified.  Thus allowing 
the complete range of emission to be seen 
(Agranovski and Whitcombe 2002). 
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2.1.  Model Background 

The original model (refer to (Whitcombe et al. 
2001) is of the form y = f(x) where x is a vector of 
11 input parameters, and these are listed in Table 
1.  The output of the model, y is the emission level 
in mg/m3 of catalyst particles from the cyclones, 
and the function f(x) is essentially algebraic. The 
model accepts the input parameters, and steps 
through a series of subroutines to calculate specific 
process outcomes in the regenerator.  The non 
linear equation representing each process, uses a 
combination of operating parameters and the 
solution of previous routines, to implement its 
particular process. This model was tested 
extensively using published examples as well as 
sensitivity analysis and was found to be 
approximately 95% accurate when dealing with 
small scale worked examples from the literature 
(Whitcombe et al. 2001 and 2002).   
 
This original model was then expanded to take into 
account particle attrition and particle feedback 
from the cyclone into the bed.  The attrition model 
selected was a three part model developed using 
FCC catalyst particles and which calculates 
cyclone, bubble and jet attrition separately 
(Werther and Reppenhagen 1999).   
 
The three part attrition model uses three different 
attrition co-efficients, one for each of the attrition 
sources.  These three co-efficients are; cyclone 
attrition, jet attrition and a particle attrition factor 
which is used to determine bubbling attrition. Co-
efficients were determined experimentally by 
Werther and Reppenhagen (1999), using FCC 
catalyst in a small scale fluidised bed.  As the 
attrition co-efficients were based on FCC catalyst, 
all values were deemed reasonable for use in this 
paper as it is near impossible to obtain accurate 
industrial attrition coefficients from a large scale 
operational FCCU.  It is important to note that no 
reference has been found in the literature warning 
of scale up problems associated with the use of 
attrition models based on small scale systems (as is 
the Werther and Reppenhagen model) when used 
to model industrial systems. After the model was 
developed it was tested on a small scale system 
and was found to over predict emissions by 100% 
to 200%.  
 
The model is designed to have 11 input variables 
(operating parameters) and one output variable 
(emission rates).  The input factors, consisting of 
operating parameters are listed in Table 1.   
 

2.2.  Sensitivity Analysis 

The New Morris Method, as developed by 
Campolongo and Braddock (1999) and corrected by 
Cropp and Braddock (2002), was selected and used to 
test for second and third order interactions in the 
input parameters for sensitivity.  The original Morris 
Method is a 'one-factor-at-a-time" (OAT) screening 
method which was selected as it allows first order 
sensitivity to be determined by alternating each  of 
the parameters individually and then estimating the 
overall sensitivity measure of that parameter to the 
output. The New Morris Method is an extension of 
the original Morris method extended to identify 
second order interactions between input parameters.  
In doing so, this New Morris Method provides an 
estimate of the output sensitivity for any pair of input 
parameters, while minimising the computational cost 
of the evaluation (Campolongo and Braddock 1999). 
The sensitivity analysis was conducted on the entire 
model  
 
The software allows a mean (µ) and standard 
deviation (δ) for the first order effects, from the 
Morris Method, as well as a new mean for the 
second order effects, lambda (λ), and its standard 
deviation, to be determined for the input factors of 
the model. The mean allows the overall influence 
of the factors to be determined, while the standard 
deviation identifies factors with possible higher 
order interactive effects. The new term, lambda, 
provides a global sensitivity measurement for 2-
factor interactions (Campolongo and Braddock 
1999).  The standard deviation of lambda has been 
shown to accurately predict possible third order 
interactions in the system (Cropp and Braddock 
2002).  
   
The software requires the identification of the input 
factor, and the range of values to be set for these 
factors (Table 1), the number of sample runs (200), 
and the discretisation of the parameter space (10). The 
number of samples and the discretisation of the 
sample space were determined to provide sufficient 
testing of the sample space whilst minimizing the 
computational requirements of the model.  The upper 
and lower bounds were determined by the absolute 
maximum and minimum possible values that could be 
seen in an operating FCCU.  All selections of 
parameters and bounds were done in conjunction with 
the practical operations of the refinery.  Due to the 
preliminary nature of this work and the use of an 
OAT technique, any errors developed by possible 
correlations in the input values were deemed to be 
reasonable. 
 
 
 
 



Table 1. List of Factors and their ranges of values used in the Sensitivity Analysis and Genetic Algorithm. 
 

Factor Parameter Lower bound Upper bound 
1 Bed Velocity (m/s) 0.1 1.5 
2 300µm size fraction (% mass) 0.001 0.20 
3 200µm size fraction (% mass) 0.001 0.40 
4 100µm size fraction (% mass) 0.05 0.60 
5 80µm size fraction (% mass) 0.1 0.90 
6 60µm size fraction (% mass) 0.1 0.90 
7 40µm size fraction (% mass) 0.05 0.60 
8 20µm size fraction (% mass) 0.001 0.40 
9 1µm size fraction (% mass) 0.001 0.20 
10 Catalyst density (kg/m3) 1197 1323 
11 Shape factor (perfect sphere = 1) 0.70 1 
    
2.3.  Genetic Algorithm 

Genetic Algorithms (GA) are optimization 
algorithms based on the mechanics of genetics, 
that is the idea of the survival of the fittest (Karr et 
al. 1995).  The algorithm allows for the search 
space of the model output to be optimized through 
the use of previously determined calculations.  
Random strings are developed based on the 
parameter set provided, the output of the model is 
then determined with each string being assessed on 
the quality of the solution provided (its fitness).  
This information is then used to generate the next 
generation of strings, as the fittest ones will 
generate the largest copies, allowing the parameter 
space to be optimized, in this case, to provide a 
minimum level of emissions from the fluidized bed 
(Karr et al. 1995).  The GA requires the upper and 
lower bounds of the parameter space (Table 1), the 
number of generations (100), the size of the 
populations (30) and the number of bits used in 
each population (10). The GA calculates the 
optimal parameters and displays their value along 
with the minimal emission rate (in mg/m3) 
achieved from the fluidized bed.  As the GA 
utilizes random numbers and the generation of 
successive populations, the optimized values of the 
parameters can change with each run.  To 
overcome this, the GA was run 10 times with the 
average and standard deviation for each parameter 
and the minimum emission rate determined.   
 
3. RESULTS AND DISCUSSION 

The following results were obtained from the 
model. 
 
3.1.  Model Results 

The model was run using the standard operating 
conditions for an industrial FCCU, with results 
presented in Figure 1.  The model predicted an 
emission rate of approximately 11,000mg/m3, 

which is considerably greater than the actual 
emission found for the industrial FCCU, which 
ranges from a maximum of just over 1,000mg/m3 
to a steady state minimum of approximately 
100mg/m3 (Agranovski and Whitcombe 2002). As 
the original model was reasonably accurate when 
dealing with small scaled systems (refer to 
Whitcombe et al. 2001), it is likely that the 
attrition component of the model was causing the 
error. It is recognized in the literature that 
modeling of emissions from large scale fluidized 
beds (such as a FCCU) are prone to error due to 
scale up factors and poor robustness of the 
developed models (Milioli and Foster 1995; 
Tasirin and Geldart 1998).  However, there is no 
mention in the literature that scale up problems 
exist for attrition models, and as the attrition model 
selected was developed using FCC catalyst all 
attrition coefficients should be reliable.  
 
To test whether the attrition model does cause the 
overestimation of emissions from the FCCU 
system, the attrition term was removed with the 
results also presented in Figure 1. 
 

 
Figure 1. Emission rate from the model with and 

without the attrition term. 
 
The emission rate without attrition was 
approximately 800mg/m3, which is within the 
range of emissions observed at an industrial 
FCCU.  This indicates that it is the attrition terms 



which are the likely source for the inaccuracies of 
the model.  To understand which of the three 
attrition components (cyclone, jet or bubble) 
causes the excessive emissions, the contribution of 
each attrition term to the over all attrition rate were 
plotted in Figure 2. 

 

 

 

Figure 4. Second order interactions 
 
In a physical sense, the interaction of the particle 
density, gas velocity and smaller particle sizes 
relates to the ability of particles to be removed 
from the bed and the rate at which attrition occurs.  
The original SA work outlined previously and in 
(Whitcombe et al. 2002) showed a mid range of 
parameter sensitivities (mid sized particles), which 
is not seen in this upgraded model.  This suggests 
that the addition of the attrition tem has led to an 
increase in sensitivity of the model towards the 
smaller particle sizes, and the gas velocity whilst 
reducing the influence of the mid sized particles, 
as expected in a real FCCU.  One reason for this is 
that at high gas velocities particle attrition is likely 
to produce a significant amount of fine particle 
emissions, thus reducing the influence of other 
parameters.  

Figure 2. Calculated Attrition Rates 
 
From Figure 2, the main source of attrition within 
the model was produced from the cyclone attrition 
term, with the bubble and jet attrition being almost 
negligible.  This indicates that there is indeed some 
sort of scaling issue which is prevalent in attrition 
models. 
 
3.2.  Sensitivity Results 

The first order sensitivity results of the model are 
presented in Figure 3 with the second order effects 
shown in Figure 4.  

 

The sensitivity of air emission towards gas 
velocity and particle density is understandable.  
For particles to be emitted from the system they 
must be first entrained from the fluidized bed and 
carried up in the gas stream and through the 
cyclones.  An increase or decrease in either the 
density of particles or the gas velocity will alter 
both forces acting on a particle and the forces 
inside the cyclones, allowing fluctuations in 
emission rates.  The low sensitivity seen in the 
larger sized particles (parameters 2 ,3 and 4) as 
well as the shape factor (parameter 11) is 
reasonable, larger sized particles and shape factor 
are not normally considered important in terms of 
emissions. 

Figure 3. First order affects and standard 
deviations 

 
The SA results of the updated model clarify the 
influential parameters in the system, preliminarily 
identified in (Whitcombe et al. 2002). Overall the 
sensitivity analysis indicates that the emissions are 
most sensitive to the bed velocity, the fine particle 
sizes (factors 9, 8 and 7) and particle density (10) 
and is insensitive to the mid sized particles (factors 
5, and 6) identified in the preliminary assessment.  
The second order effects support the first order 
findings with the finer particle sizes, density and 
gas velocity interactions influencing the rate of 
emissions. These second order results support the 
theory that velocity, particle density and the fine 
particles are the most sensitive in terms of 
influencing emission rates.   

 
3.3.  Genetic Algorithm 

Optimised parameter values for the minimisation 
of particle emissions using the original attrition co-
efficients in the model and using the optimised 
attrition co-efficients, were generated using the 
genetic algorithm and are presented in Table 2.  
Results are the average value obtained from 10 
separate runs from different initial points of the 
GA program.  



Table 2. Optimal operating conditions to minimise particle emissions determined from the Genetic Algorithm 
for the original model and optimised attrition constants. 

 Original Model Optimised Attrition Constants
 Average CV(%) Average CV(%) 
Emission rate (mg/m3) 5450.2 6.6966 2899.8 3.0933 
Bed Velocity (m/s) 0.66958 16.315 1.2004 12.138 
300µm size fraction (% mass) 0.079904 44.682 0.062161 79.668 
200µm size fraction (% mass) 0.19751 56.835 0.11585 40.021 
100µm size fraction (% mass) 0.090499 87.572 0.098932 97.949 
80µm size fraction (% mass) 0.69011 33.35 0.31185 69.548 
60µm size fraction (% mass) 0.19509 40.098 0.1262 16.845 
40µm size fraction (% mass) 0.051559 3.4567 0.050699 1.8738 
20µm size fraction (% mass) 0.0001 0.00 0.0001 0.00 
1µm size fraction (% mass) 0.0001 0.00 0.0001 0.00 
Catalyst density (kg/m3) 1652.8 2.6576 1682.6 0.81966 
Shape factor (perfect sphere = 1) 0.65049 18.96 0.74892 16.075 
     
The minimised rate of particle emission using the 
original attrition co-efficients was calculated as 
5,450.2mg/m3. The predicted optimal value is 
considerably higher than that tested at an industrial 
FCCU, indicating that the attrition induced error is 
not removed through optimisation of the model.  
Also the optimised parameters include a gas 
velocity of 0.66m/s, which is at the lower end of 
the operational range. 

 

 
The low coefficient of variation (CV) indicates 
parameter sensitivity, as the optimal value is found 
in a narrow range.  The velocity, 20 and 1µm sized 
particles, and catalyst density are shown in Table 2 
to be sensitive parameters affecting the emissions. 

Figure 5. Optimal emission rates from the model 
with alterations in each of the three attrition 

coefficients 
 

 From Figure 5 it is clear that altering each of the 
attrition terms influences the optimal emission 
rate, with the cyclone attrition coefficient being the 
most influential.  Altering the bubble or jet 
attrition term does not significantly alter the 
optimal emission rate, whilst the cyclone attrition 
terms stabilises when decreased by a factor of 100.  
As all of the attrition terms used were sourced 
from the literature and based on experimental 
observations of small scale systems, it appears that 
the experimental work done on small scale systems 
are accurate for determining bubbling and jet 
attrition, but not cyclone attrition in large scale 
fluidized beds. It appears that large scale industrial 
cyclones have far less attrition when compared 
with scaled down laboratory devices. This is a 
result not directly discussed in the literature and 
one that is not mentioned when dealing with the 
modeling of air emissions from fluidized beds.  

When the SA results are compared to the GA 
results, some interesting trends are seen.  Firstly, 
the large values for the coefficient of variance 
obtained from the GA runs for the larger sized 
particles (parameters 2, 3 and 4) indicate that a 
large range of these parameter values can be used 
to minimize the emission results, ie they are not 
sensitive.  This supports the SA results that these 
factors are not influential in controlling particle 
emissions.  Of interest is that the optimal shape 
factor was 0.65 indicating that a non-spherical 
particle is the preferred shape to minimize 
emissions in the industrial system.  No reason can 
be given to explain this.  
 
To test how each of the attrition terms influences 
the predicted emission rates, the three attrition 
coefficients (cyclone, bubble and jet) were altered 
in increments of 10 times the original value, with 
optimised emission rates then being recalculated. 
The results are presented in Figure 5. 

 
Knowing that the cyclone attrition coefficient is 
reduced under larger scaled industrial conditions, 
the model was optimized using the reduced value  



(decreased by 100x) of the cyclone attrition rate 
shown in Figure 5.  The new optimum level of the 
emissions is presented in Table 2.  The new level 
is almost half of the original optimization with an 
emission rate of 2,899mg/m3.  Although most 
parameters were found to be similar, the new 
optimized emission rate was determined at a 
significantly higher gas velocity.  The new velocity 
of 1.2m/s is at the higher end of the operational 
range of an FCCU and it is unclear as to why this 
velocity is optimal. It is known that gas velocity 
influences emission levels and one would think 
that a lower velocity would produce lower 
emissions. One possible reason is that the cyclones 
are functioning better at this higher velocity, 
overcompensating for any increase in particle carry 
over due to higher velocities.  This is supported by 
earlier work which showed that the more simplistic 
model could produce lower emission levels at 
higher gas velocities (Whitcombe et al. 2001). The 
shape factor was also found to be slightly higher 
(0.75), indicating that a more spherical particle is 
required to reduce emission under realistic attrition 
conditions. 
 
4. CONCLUSION 

The updated model has shown that fine particles, 
gas velocity and particle density are the most 
important operational parameters in terms of 
minimising particle emissions from a FCCU.  
Overall the model was found to significantly over 
estimate the true nature of emissions from an 
FCCU.  It was concluded that this error was due to 
scale up issues arising from the attrition terms 
used.  Optimization of the model supported the 
hypothesis that it is the attrition terms, and in 
particular the cyclone attrition coefficient, which is 
responsible of the over estimation of particle 
emissions. It appears that cyclone attrition is 
substantially less in larger systems than found in 
smaller laboratory based cyclones.  Optimisation 
of the model with a more realistic attrition term 
showed that even at high gas velocities emission 
levels could be minimised.  This work has 
supported earlier studies identifying particle size, 
density and gas velocity as the main parameters 
which should be controlled to minimise particle 
emissions from FCCUs.  Further work is needed to 
develop better attrition models for use in large 
scale systems, so more accurate emission models 
can be developed. 
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