
It’s TIME for a New Environmental Modelling
Framework

J.M. Rahmana,b, S.P. Seatona,b, J-M. Perrauda,b, H. Hothama,b, D.I. Verrellic,b and J.R. Colemana,b
aCSIRO Land and Water, GPO Box 1666, Canberra, ACT, 2601, joel.rahman@csiro.au

bCooperative Research Centre for Catchment Hydrology
cDepartment of Civil and Environmental Engineering, The University of Melbourne, Victoria

Abstract: The Invisible Modelling Environment (TIME) is a new environmental modelling framework being
developed within the Catchment Modelling Toolkit project in the CRC for Catchment Hydrology. TIME
differs from existing modelling frameworks in a number of ways, particularly in its use of metadata to
describe and manage models as well as the flexibility given to model developers to ‘pick and choose’ the
components of TIME relevant for a given project. Functionality that is embedded as an immutable ‘core’
layer in other frameworks is included in applications under TIME on an as-needed basis using optional,
interchangeable components. This flexibility extends to components that manage data and models,
recognising that one approach does not necessarily fit all applications. TIME includes a number of small
framelets supporting extension in key areas such as data representation and visualisation. All fundamental
data types, such as rasters and time series, are defined within the data framelet, which supports the definition
of new, compatible data types. The visualisation framelet allows the definition of ‘layers’, each providing a
visual representation of some type of data, such as rasters or polygons. Multiple layers can be placed on a
single ‘view’, such as overlaying a polygonal map on a raster. Views can be surrounded by ‘decorators’ such
as axis and titles, each of which can be combined independently. TIME includes a number of tools, which
operate generically on models, including an automatic user interface generator and various model
optimisation tools. TIME is developed on the Microsoft .NET platform and supports the development of
models in a variety of languages, including Visual Basic.NET, Fortran 95.NET, C# and Visual J#. TIME is
currently being used to develop a range of modelling applications, including a library of rainfall runoff
models and a model supporting assessment of stream ecosystem health under various flow scenarios.

Keywords: Modelling Frameworks, .NET, Catchment Modelling Toolkit, TIME

1. INTRODUCTION

The Catchment Modelling Toolkit project (the
Toolkit) within the Cooperative Research Centre
for Catchment Hydrology (CRCCH) is producing
a cohesive suite of environmental modelling
applications. Central to the delivery mechanism is
the use of environmental modelling frameworks
to allow models to be developed and integrated
quickly and consistently.

Environmental modelling frameworks are
software products that provide support for the
development of new environmental simulation
models. While the operational characteristics of
frameworks vary considerably, certain common
elements apply. Frameworks typically provide a
template for new model components, along with
support and visualisation for common data types.

Several frameworks were evaluated and used
extensively for the toolkit project before a
technology opportunity made it feasible to
develop a new framework that better suited the
needs of environmental modellers within and
beyond the CRCCH.

2. MODELLING FRAMEWORKS

Domain specific software frameworks have been
an active area of research in software
development (Gamma et al., 1994) as well as
many disciplines for some time, and
environmental modelling is no exception (Argent
et al., 2001).

Frameworks for environmental modelling
typically support rapid model development and
integration by generic, reuseable components for
data handling and visualisation. Some
frameworks go as far as to provide custom
development tools, such as modelling languages
(Reed et al., 1999) or graphical design tools
(Maxwell and Costanza, 1997). Other
frameworks, such as Tarsier, rely on model
developers using third party development tools
and languages (Rahman et al., 2003a).

Both approaches have their pros and cons. For
example, it is much easier to achieve good
runtime performance using commercially
available compilers than by developing a domain

specific language. Custom modelling languages
often lack the flexibility of a commercial
development tool that may limit their applicability
to larger modelling applications. However, when
using a custom modelling language, it is much
easier to shelter the model developer from
language details such as memory management
and provide a much more customised experience.
Furthermore, by writing a custom language
interpreter or compiler, it is possible to write
framework components that reason about models
in other ways, such as creating user interfaces
based on the variables and functions found in the
model code (Rahman et al., 2003b). Commonly,
frameworks based on custom modelling
languages are suitable for model developers with
little programming experience in commercial
programming languages, while developers
needing to create more customised user interfaces
will typically adopt a framework that uses a
commercial development tool.

TIME attempts to find a middle ground, by using
a commercial development platform (.NET) that
supports the dynamic discovery of system
properties at runtime. .NET allows the elementary
integration of components written in different
languages, including Visual Basic, Fortran and
C++ (Meyer, 2001). In each case a .NET specific
compiler, for a given language, is required.
Additionally, .NET provides a language
independent mechanism for discovering
components, and the properties of components, at
runtime. These properties include inherent
properties, such as the class structure and the
fields and methods of a class, along with custom
metadata tags that can be defined by application
and framework developers.

TIME makes use of the metadata capabilities of
.NET to automate several tasks, such as user
interface generation, that are not possible with
many modelling frameworks based on
commercial development tools. By automating
these common tasks, the model code does not
become directly coupled to the implementation of
those tasks, relieving model developers from code
maintenance tasks stemming from framework
evolution.

3. TIME

TIME is a new environmental modelling
framework intended to support several key stages
of model development. TIME supports the
development of new model components, using
one of a number of languages, along with the
testing of those model components in a generic
test-bed, providing a high level of data handling,
analysis and visualisation.

TIME then supports the integration of modules
into applications with highly customised, visually
rich user interfaces, using a number of reuseable
components for data handling and visualisation.

TIME includes support for a number of key data
abstractions for environmental modelling,
including Rasters, Time Series, Points, Lines and
Polygons and Node Link Networks. Additionally,
reuseable components support data analysis,
visualisation and high level model processing.

3.1. Architecture

At the highest level of abstraction, TIME is
represented as a layered system (Figure 1), with
components in each layer interacting with the
layers below it. Each layer contains a family of
components and, in some cases, small
frameworks supporting a specific aspect of model
development. These small frameworks, or
framelets (Pree, 2000), handle aspects such as
visualisation, IO and user options management.

Kernel

Data

Models

Tools

Visualisation and User Interface

Figure 1: Main Architectural Layers of TIME

The core framework is contained in the Kernel
layer, which contains definitions of the various
metadata tags, as well as the abstract parent
classes for models and data representations. The
Data layer contains the key data representations,
along with various mechanisms for performing
data IO operations. The Models layer contains all
the modelling components in the system and is
the layer in which most developers create
components. The Tools layer provides various
components that perform generic processing of
data and models, including data statistics and
parameter optimisation. The Visualisation and
User Interface layer contains the visualisation
framelet, components for visualising each data
type as well as various high level components for
user interaction.

3.2. Core Framework

The Kernel layer is sufficient to develop many
simple models that do not explicitly deal with
data objects such as Rasters or Time Series.

The set of metadata tags (Table 1) includes tags
for classifying and documenting properties of
models, as well as tags for classifying the scope
of components.
Tag Used To Applied

To

Input Classify model fields Fields

Output Classify model fields Fields

Parameter Classify model fields Fields

State Classify model fields Fields

Minimum Minimum allowable value Fields

Maximum Maximum allowable value Fields

WorksWith A component works with a
particular type of data

Classes

Ignore Exclude component or
field from generic tools

Classes,
Fields

Summary Provide free text
description of fields or
components

Classes,
Fields

CalculationUnits Specifies the Units the
component uses internally

Fields

DisplayUnits Specifies the Units that
should be used to display
inputs and results

Fields

UserOption Flags a field as a default
the user can change and
maintain across sessions

Field

Table 1: Metadata tags defined in TIME Kernel
layer

The core framework is made up of the abstract
parent classes Model and Data, the interface
Geometry, and the support class Subject with
its corresponding interface, Observer (Figure 2).
Model is the parent class of all modelling
components and includes the abstract method
runTimeStep, implemented by all child classes.

Figure 2: Core Framework, including

Data/Geometry framelet.

Data is the parent class of all data types and
includes methods for generic, one dimensional

access to all data types. All child classes of Data
must implement the item(in i : int)
query and the setItem(in i : int, in val
: double) method to provide this common
interface. The one dimensional methods are
typically used by generic tools, such as the data
statistics, that do not depend on the spatial or
temporal context of the data. Child classes are
free to add additional accessor methods that take
advantage of their context, such as two
dimensional (row, column) indexing of rasters, or
access to time series’ based on date and time.

The context of a data object is specified by its
Geometry, with all data objects sharing a
common Geometry considered ‘compatible’ for
the purposes of various operations, such as
mathematical operators (+, -) or custom methods,
such as regression. This separation allows
efficient representation of spatial data, such as
polygonal coverages, linked to attribute tables.
The shape and location of polygons is represented
by a shared Geometry, while each column of the
attribute table becomes a Data object that can be
processed and manipulated generically.

Following the separation of data and geometry,
most data types are represented by two classes:

• A class implementing the Geometry
interface and storing the spatial /
temporal context of the data, and

• A class representing values stored by the
data type, made accessible using both the
generic, one dimensional accessor
methods and any additional data type
specific methods.

The Subject parent class of Model and Data
allows Observers to subscribe to model and data
objects to receive notification of changes (Gamma
et al., 1994).

3.3. Visualisation Framelet

The Visualisation Framelet (Figure 5), within the
Visualisation and User Interface Layer contains
parent classes for all components involved in the
visualisation of data. These include the Layer and
ViewDecorator. Both graphs (such as time series
plots and scatter plots) and spatial maps are
handled by the same basic system.

Subclasses of Layer contain logic to draw a
particular representation of some data type
instance onto a Canvas. A Canvas can contain
multiple layers overlaid on the one plot. Canvas
manages the drawing of individual layers,
translating from the world coordinates of a layer
to screen or device coordinates. A Canvas may
be ‘decorated’ by one or more ViewDecorators,

such as Axis, Titles and Legends. The
arrangement of Canvas and ViewDecorator
follows the Decorator design pattern (Gamma et
al., 1994), with both the canvas and the decorators
implemented as subclasses of View.

Various components can make use of View
objects, including printing components, bitmap
generators and web-based mapping tools. The
most common such component is a
ViewControl that allows a View to appear on an
area of a window, within a graphical user
interface.

Complementary components provide generic
functionality for user customisation of
visualisations and for defining user interactions
with plots (such as zoom, pan and interrogate).

3.4. Miscellaneous Framelets

The TIME code base includes several other
loosely coupled framelets for several key aspects
of model and application management. The IO
subsystem abstracts the operations of reading and
writing data in different file formats from data
sources (typically files). The User Options
component provides a generic mechanism for
managing application customisation by users,
using a metadata tag (UserOption) and a
management component that stores values for
options in the Windows Registry. The Units
component (Figure 3) represents common units
(such as mm, mg.L-1 or m3) and provides
conversions between compatible units. Units are
represented as either Simple Units (length, mass,
time or currency), or Compound Units that
combine existing units using multiplication or
division. Thus a concentration unit is a mass unit
divided by a volume unit, where the volume unit
is the cube of a length unit.

Figure 3: TIME representation of Units, with

Simple Units and Compound Units.

4. GENERIC COMPONENTS AND TOOLS

The Data, Tools and Visualisation & User
Interface layers (Figure 1), provide numerous
generic components built with the core
framework and the additional framelets. These
components are used heavily by TIME developers
when writing and testing model components, as
well as application developers integrating
modelling components into polished applications.

4.1. Data Types and Data Processing

TIME includes built in support, including IO, for
a range of data types (Table 2).
Data Type Summary

Raster Two dimensional regular grid of data,
located within a geospatial context

TimeSeries Temporal arrangement of data on one
of several fixed timesteps

Node Link Network Abstract representation of physical
networks, such as river systems

Sites Collections of points in space

Poly Lines Linked collection of multi segment
lines

Polygons Collection of closed polygonal regions

Cross Sections Surveyed, or generated river cross
sections

Arrayed Data Ordered list of values with no spatial
or temporal context

Table 2: Standard Data types within TIME

In addition to many data type specific processing
tools, such as terrain analysis of rasters, TIME
includes many operations that act on any data
type. These include mathematic operations (such
as adding two data objects together), statistics
(such as the mean of a data object or the
correlation between two objects) and a rules-
based data processing engine.

4.2. Visualisation

The Visualisation and User Interface layer
contains numerous components built with the
Visualisation framelet. This includes standard
Layers for each of the main data types except
Arrayed Data, along with special layers for
displaying alternative representations of data.
These include scatter plots, that take any two data
objects of the same type (e.g. two time series, or
two rasters), cumulative frequency graphs and
flow duration graphs and probability density
plots.

Various Decorators can be used to improve the
appearance and utility of visualisations, including
axis, titles, labels and legends. All Layers and
Decorators provide numerous options for

developers and users to tailor the appearance of
their visualisations.

4.3. Model Processing

A key advantage of the metadata based
environment of TIME is the support given to
developing ‘model processing tools’ (Rahman et
al., 2003b). Model Processing Tools provide
generic functionality by adapting to new models
automatically at runtime. The tools are able to
investigate the inputs, outputs and parameters of a
model and discover additional information, such
as the numeric range of parameters.

TIME currently includes a range of tools that
make use of the metadata, including the automatic
generation of graphical user interfaces and
command line interfaces for models and several
parameter optimisation tools. The interface
generators provide tailored components for each
field of the component, allowing users to select
inputs and parameters and view state variables
and outputs.

For time-stepping models, the interface generators
are able to automatically attach input time series
to any double precision input, and record output
time series of any model output or state variable.
This saves the model developer the effort of using
and creating time series objects, while allowing
the new model component to remain flexible,
with configuration decisions being made at
runtime rather than compile time. This is
particularly important for model components that
may be used extensively throughout a large
integrated application. When testing a single
instance of such a component, it may be desirable
to store time series of each output and state
variable. However, storing many time series for
each instance of the component in the context of
the integrated model may be unnecessary or even
impractical, given memory constraints.

5. USING TIME

Developers can use TIME to create model
components, as well as modelling applications. A
model component encapsulates the core scientific
algorithm of a model, deferring administrative
details such as data handling, visualisation and
user interaction to other components. Model
component developers use the generic tools of
TIME as a test bench for using and calibrating the
model.

A modelling application encapsulates one or more
model components, into a high level user
interface that uses and tailors various TIME
components.

Modelling components can be written in one of
several .NET languages, while modelling
applications can combine components in different
languages.

5.1. Developing Models

All models are implemented as a class within a
.NET language. Model classes inherit from the
parent class, Model, and implement the abstract
method runTimeStep(). Additionally, models
define fields for their inputs, outputs, parameters
and state variables, and document them
accordingly with metadata tags.

Figure 4 shows the complete code for ToyModel,
a simple TIME model written in C#. ToyModel
includes two inputs, rainfall and actualET; a
state variable, netRainfall; a parameter,
coefficient and an output, runoff. The
variable declarations for each have been marked
with appropriate metadata tags that can be used
by model processing tools within TIME.

using System;

using TIME.Core;

public class ToyModel : Model {

 [Input,Minimum(0.0)] double rainfall;

 [Input,Minimum(0.0)] double actualET;

 [State] double netRainfall;

 [Parameter,Minimum(0.0),Maximum(1.0)]

 double coefficient;

 [Output] double runoff;

 public override void runTimeStep() {

 netRainfall =

 Math.Min(0.0, rainfall–actualET);

 runoff = coefficient * netRainfall;

 }

}

Figure 4: Example TIME Model in C#.

The source code for model components typically
only references components in the kernel and data
layers of TIME, reducing the amount of the API
that developers must learn. When testing and
using models however, users have access to many
generic tools found in the Tools and Visualisation
layers. These include graphical or command line
user interface generation for the model and
parameter optimisation. The generic tools also
support attaching data to inputs and outputs, such
as attaching an input precipitation series to the
rainfall property of ToyModel.

5.2. Developing Modelling Applications

Modelling application developers create TIME-
based applications using a .NET language and the

suite of data, model, tool and visualisation
components in the framework.

The Rainfall Runoff Library (Perraud, 2003),
represents a significant application built within
TIME and integrates models with data,
visualisation and optimisation tools within a
sophisticated user interface.

Application development requires a broader and
deeper understanding of TIME than developing
model components, but the use of many reuseable
components simplifies this task considerably.

6. CONCLUSION

Modelling frameworks simplify, and allow
generalisation of a number of aspects of model
development, including coding, model integration
and data visualisation. Key differences between
frameworks typically include tradeoffs of
performance and usability between frameworks
based on commercial development tools and those
utilising custom model development languages.
TIME is a new framework that attempts to
achieve a ‘best of both worlds’ configuration by
using a commercial development environment
that offers similar advantages of usability and
customisability of custom languages. This
decision, along with a depth of functionality in
traditional framework areas, such as visualisation,
allows TIME to be learned quickly and used
effectively for the development of individual
model components, while still providing a
foundation as well as customised modelling
applications.

7. REFERENCES

Argent, R.M., R.A. Vertessy, J.M. Rahman and
S.P. Seaton, From Components to
Decisions: The Role of Software
Engineering and Frameworks in

Catchment Decision Support, in
Proceedings of MODSIM 2001, Canberra,
December 2001, Vol 4, pp 1589-1594.

Gamma, E., R. Helm, R. Johnson, and J.
Vlissides, Design Patterns: elements of
reusable object oriented software, Addison
Wesley, 1994.

Maxwell, T. and Costanza R., A language for
modular spatio-temporal simulation,
Ecological Modeling, 103, 105-113, 1997.

Meyer, B., .NET is Coming, Computer, pages 92-
97, August 2001.

Perraud, J-M., G.M. Podger, J.M. Rahman and
R.A. Vertessy, A New Rainfall Runoff
Software Library, Proceedings of
MODSIM 2003, Townsville, July, 2003.

Pree, W. and Koskimies, K., Framelets – Small
and Loosely Coupled Frameworks, ACM
Computing Surveys, 32, 1es, 2000.

Rahman, J.M., S.M. Cuddy and F.G.R. Watson,
Tarsier and ICMS: Two Approaches to
Framework Development, Mathematics
and Computers in Simulation, 2003, in
press, 2003a.

Rahman, J.M., S.P. Seaton, and S.M. Cuddy,
Making Frameworks More Useable: Using
Model Introspection and Metadata to
Develop Model Processing Tools,
Environmental Modelling and Software, in
press, 2003b.

Reed, M., S.M. Cuddy, and A.E. Rizzoli, A
framework for modelling multiple resource
management issues - an open modelling
approach. Environmental Modelling and
Software, 14, 503-509, 1999.

Figure 5: TIME Visualisation Framelet, with a ViewControl containing a single View, which can be either a
nested set of Decorators, or a Canvas. A Canvas can contain multiple Layers, each responsible for drawing

some data in a particular style.

