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Abstract: Lumped-conceptual rainfall-runoff models are a ‘stock in trade’ tool for those working in the 
water industry and allied fields.  However, there are many alternative models available, and sometimes 
multiple implementations of the same model.  The consequence of this is a plethora of models with different 
operational features and different access arrangements.  Similarly, there are a variety of optimisation tools 
being used to calibrate such models, and they too vary greatly in terms of their style and access arrangements.  
To address this issue we have developed a software application currently called the ‘rainfall-runoff library’ 
(RRL) and have made this available to end-users via the World Wide Web. The RRL includes some popular 
lumped conceptual rainfall-runoff models, including AWBM, SimHyd and Sacramento.  It also includes 
popular model-independent and multi-objective parameter optimisation routines, including the Pattern 
Search, Shuffled Complex Evolution and Genetic Algorithm methods.  In addition, a custom parameter 
optimisation method for AWBM is provided.  The RRL has powerful visualisation and data handling 
features.  It is expected that end-users will be more willing to trial a range of models and parameter 
estimation methods on their particular modelling problem as the ‘cost’ of moving from one method to 
another is relatively minor given the common interface elements. The tools embedded within the current 
version of the RRL are a sample only and we expect the software to grow significantly over the coming 
years.  For this reason, we have designed the RRL as an extensible system that simplifies the task of adding 
models or optimisation methods, by using object introspection and metadata.  This paper explores the 
functional analysis, technical design and implementation of the RRL. 
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1. INTRODUCTION 

Modelling of rainfall-runoff relationships has 
been studied for several decades. One 
consequence is the proliferation of a large number 
of models implemented with different access 
arrangements, software requirements, and data 
formats. Despite this proliferation, or maybe 
because of it, most engineers will use primarily 
one model for any given task. However, papers 
like those of Perrin (2001) suggest that while 
some models may be identified as more robust, 
the variability in the behaviour of catchments 
ensures that no model will be the best in all cases. 

The Cooperative Research Centre for Catchment 
Hydrology (CRCCH) has built a library of 
lumped conceptual rainfall-runoff models for 
inclusion in its Catchment Modelling Toolkit. The 
aim is to unify the tools commonly found in 
rainfall-runoff model software implementations, 
while still allowing for model specificities. The 
library is implemented within the CRCCH 
modelling framework TIME (The Invisible 

Modelling Environment), and adopts many of its 
software engineering paradigms. 

One purpose of this library is to offer the water 
engineering community a set of models that is 
accessible through a common, user-friendly 
interface. While this library is not meant to be a 
tool for model development, it is structured such 
that the effort required to add a new model or 
optimisation method is minimal. Another goal of 
the project is to develop hydrologic software 
components which can be re-used within other 
applications resident in the CRCCH Catchment 
Modelling Toolkit. This paper presents the 
rationale and the design of the Rainfall Runoff 
Library (RRL), and how needs driven by this 
project can lead to the production of generic re-
usable components in an integrated modelling 
environment. 

2. ANALYSIS OF NEEDS  

The main population of users of the RRL are 
found in the water engineering community. A 
large number of model structures were reviewed 



to determine the common patterns found in them. 
As part of the analysis of likely needs of this 
group, a previous implementation of AWBM 
from Boughton et al. (1996) was carefully 
examined, as this is one of the most widely-used 
models in the Australian water engineering 
community. Interestingly enough there were very 
few properties found to be truly common to all 
models, aside from the rainfall input data, which 
indicated the need for a framework which could 
accommodate idiosyncratic model structures. 

The water engineering community’s major needs 
in terms of an integrated RRL were identified as 
follows: 

• The ability to read datasets from existing 
software implementations and 
environments, 

• A unified software interface containing 
generic visualisation features found in 
the majority of model implementations , 
as well as more advanced visualisation 
capabilities, 

• The ability to easily trial and compare 
several models to avoid the one-model-
fits-all syndrome, 

• A facility to add new rainfall-runoff 
models with a minimum of development 
effort, 

• The ability to track and archive the tasks 
performed leading to the calibration of a 
model on a particular catchment and the 
results. 

Although most of lumped rainfall-runoff models 
use a daily time step, our implementation of these 
in TIME does not make any assumption about the 
time step. 

Most required tools, with the help of object-
oriented programming, are rather naturally 
leading to the design of re-usable hydrologic 
software components. Examples of such 
components might include a Unit Hydrograph 
tool, elementary “bucket” objects, or the discrete 
probability density function generators used in 
several calibration tools based on evolutionary 
principles. In other cases the specific needs, 
provided they are looked at within a broader 
context, lead to the definition of more generic and 
powerful mechanisms.  Such an example might be 
the code needed for axis transformations required 
for the display of duration curves on a log-normal 
scale. 

The aspect of the RRL that required the most 
development effort was the model calibration 
tools. The optimisation methods we implemented 

were categorised in three broad types: generic, 
custom and manual. The generic optimisers treat 
equally all parameters of a model, whereas 
custom ones have an intrinsic knowledge of a 
given model and its parameters. Tools based on 
well-known procedures have been included, like 
the Pattern Search from Hookes et al. (1961), the 
method described by Rosenbrock (1960), Genetic 
Algorithm (Wang, 1991), and the Shuffled 
Complex Evolution, based on Duan et al. (1992) 
and (1994). Although optimisation tasks in the 
RRL are focussed on runoff time series, we have 
implemented these various optimisation methods 
such that they can be applied to other data types 
such as rasters.  In this way, they serve a more 
general purpose in the Catchment Modelling 
Toolkit. 

The quality of the calibration of a model for a 
given purpose depends a lot on the choice of an 
appropriate objective function. When surveyed, 
end-users declared a clear need to choose from a 
range of objective functions in the calibration 
process. They also stated the need to be able to 
calibrate on the flow duration curve as well as 
flow series.  One of the reasons given for this was 
to overcome time mis-matches between input 
rainfall and flow data. One such mis-match 
problem arises when daily rainfall records start 
and end at 9am whereas daily flow records start 
and end at 12 am. 

3. DESIGN 

3.1. System Architecture 

The overall architecture of RRL follows 
principles that are fairly standard in modern 
software engineering practice. The application is 
broken into four main parts (Figure 1). The data 
Input Manager allows for the transparent addition 
of new readers and writers for new time series file 
formats. The Model Manager references all of the 
rainfall-runoff models implemented in the RRL 
and includes a collection of tools necessary for 
model introspection (i.e. the discovery of model 
variables relying on metadata; see next section). 
The Calibration Manager acts as the coordinator 
of all the objects involved in an optimisation 
process, and as a single point of entry in this 
regard for the code in the user interface layer. 
Results and graphs are presented via the Display 
Manager. These layers are discussed in more 
detail in the following sections. 

 



The Input Manager is a context-sensitive 
component, which relies solely on the discovery 
of model properties tagged with the Input 
attribute. It also stores the definition of input 
modifiers (e.g. monthly pan factors), which is a 
generalisation of a feature found in the 
Sacramento model implemented by the New 
South Wales Department of Land and Water 
Resource Conservation. Input data is thus left in 
its original state while the correcting factors 
applied are explicit. 

 The Calibration Manager has the role of storing 
information on the current state of calibration, 
which includes primarily the parameter values, 
the dates for calibration and verification, the type 
of optimiser, and the selected objective functions. 
It is thus hiding the complexity of the calibration 
process from the user interface layer. Reflecting 
the categorisation of the optimisers, two 
interfaces have been defined: IGenericOptimiser 
and ICustomOptimiser. As all automatic 
optimisation schemes rely in one way or another 
on the maximisation or minimisation of one or 
several objective functions, it is clearly necessary 
to standardise the behaviour of the optimisers in 
this respect. If not, it easily leads to a bug-prone 
situation. The convention adopted is to separate 
the task of optimising from the task of calculating 
the objective value. An IGenericOptimiser will 
always minimise the objective, while an 
Objective Calculator, which will be described in 
further details below, is in charge of returning a 
value which is to be minimised, relying on the 
inspection of the Minimise attribute on the 
method calculating the objective function. 
Another characteristic of many optimisation 
schemes is the parallel or successive calculations 
performed by objects of the same type. Consider 
for instance the case of a Pattern Search with 
multiple start searches, or the evolution of some 
ensembles or populations of points in a parameter 
space (Genetic Algorithms). Many properties will 
be transversal to all the objects of the same type, 
for instance the number of points per population 
and the maximum number of iterations. Also, 
optimisers of all types share a few properties and 
actions identical in purpose (e.g. notifying the 
user interface of the status of the ongoing 
optimisation). Due to these common properties an 
optimiser with consistent mechanisms has been 
structured into the framework of the RRL, where 
the optimisers (e.g. a collection of Pattern Search) 
and the individual search instances share the same 
parent class, although only the former will 
implement the interface IGenericOptimiser. 

Figure 1 System architecture 

3.2. Metadata attributes 

The use of metadata attributes, as described by 
Rahman (2003), is a prominent aspect of the 
software design for the RRL and permits the 
development of powerful and flexible model 
processing tools and user controls. Metadata 
attributes carrying the characteristics of model 
parameters, such as Minimum, Maximum, and 
Default Value, is of particular interest in the RRL. 
For instance, the quality of model calibration is 
very dependant on the specification of the 
parameter space boundaries, hence the importance 
of the correct definition of these attribute. Most of 
the flexibility in the RRL is achieved through 
attributes and their detection at run-time. 
Examples of the use of attributes to address 
specific needs associated with the analysis of the 
RRL are discussed in the next section. 

3.3. Objects and Components 

All rainfall runoff models in the RRL inherit from 
the same parent abstract class 
‘RainfallRunoffModel’. This class plays a key 
unifying role to detect the available models at 
run-time. As indicated in the section of needs 
analysis, it appeared that the vast majority of 
properties and methods of the models could not 
be deferred to a parent class.  Hence, it was 
decided that this class had to be kept very small in 
order to leave room for the idiosyncrasies of each 
model, such as the definition of its inputs, outputs 
and parameters.  

Following the design philosophy of TIME, the 
individual models in the RRL do not explicitly 
handle time. Instead, they utilise a simple 
runTimeStep() method and the declaration of 
inputs, outputs, and parameters as doubles or 
integers. Keeping the models small is one 
important reason which permits the easy addition 
of a new model to the RRL, since no complex 
time handling is necessary. 

The Objective Calculator relieves the optimisers 
of the task of calculating the goodness of fit, 
while offering additional flexibility, such as the 



ability to calibrate on a flow duration curve as 
opposed to a flow series. A generic mechanism 
has been designed, whereby the observed and 
calculated runoff time series are, from the point of 
view of the optimisers, transparently transformed 
to the appropriate form prior to the calculation. A 
Compound Objective Calculator class, with a 
customisable property ‘compounding function’, 
inherits from the Objective Calculator. A 
calibration on several objectives is thus again 
hidden from the optimiser. Any number of 
objectives can be set up, although the RRL itself 
currently uses a maximum of two. 

Output time series are handled through the use of 
a Recorder object. The Recorder uses internal 
dictionary structures or ‘Hashtables’, as referred 
to in .NET terminology, where keys are the fields 
of the models, and the values the references to the 
time series in which to store the output. 
Combined with the run-time discovery of 
properties tagged with the Output and State 
attributes, this offers the option to record several 
model properties of interest. 

The visualisation components have two important 
features worth mentioning here. First, an abstract 

class AxisTransform has been implemented, so 
that advanced visualisation capabilities required 
by the RRL are addressed. The graphical canvas 
has properties that can be set to any suitable 
transform (e.g. LogTransform and 
NormalTransform, Figure 2). Second, the use in 
TIME of the Observer-Subject design pattern 
permits dynamic updating of all graphs when 
model parameters are changed. 

3.4. Languages 

The RRL is implemented in TIME, which in turn 
is founded on the Microsoft .NET platform, 
which offers multi-language capabilities. Most of 
the RRL is written in C#, but Sacramento is 
written in Fortran for .NET. It is also expected 
that some more models will be implemented in 
Visual Basic.  Other possible coding languages 
include J#, Eiffel, and Pascal, to cite a few.  
Hence, one of the real virtues of the RRL is that 
collaborators can contribute new models to it 
using the language of their choice. 

 

 
Figure 2. Duration curves of observed and calculated runoff, plotted on a log-normal scale. 

 



4. CHALLENGES 

4.1. Models with varying structure 

Some rainfall-models are based on a varying 
structure, and hence contain varying numbers of 
parameters (for instance, the IHACRES model, 
Jakeman et al. (1993)). This is a clear challenge 
to the application of generic optimisation 
methods, since this means that the parameter 
space may change from one iteration to another in 
the calibration process. This can be also the case 
when models are using unit hydrographs and the 
number of parameters of the model is varying 
with the length of the memory of this unit 
hydrograph. While optimisation tools can be 
designed to handle varying structures and 
parameters, they are very difficult to implement, 
and the behaviour of the generic algorithms is 
unknown.  

4.2. Optimisation under constraint 

It is not rare to find in a model some of its 
parameters related by an equation or inequality. 
For instance, AWBM can have three parameters 
A1, A2 and A3 (partial surfaces) related by the 
equations 

1321 =++ AAA  (1) 

with ∀  (2) 0, ≥iAi

The problem of varying freely the first two 
parameters in a truly generic optimiser while 
keeping this constraint strictly true is not trivial. 
There are many good analytical methods for 
optimisation subject to constraints (see for 
instance Arsham (2003) and references). The 
implementation of one of the generic numerical 
solution algorithms would here again require a 
significant amount of work, due mainly to the 
non-linearity of the response curve. 

A more pragmatic approach to calibrating models 
with parameters subject to constraints and also 
dealing with models with a variable structure is 
probably to design custom optimisers with 
intrinsic knowledge of those models, and which in 
turn can call generic optimisers. 

4.3. Performance and flexibility 

Performance is not really an issue when we are 
considering running a rainfall-runoff model, even 
over centuries of daily data, given the processing 
power available these days on any personal 
computer. However, the nature of the calibration 
process is such that the complexity of the problem 

is exponentially related to the number of 
parameters in the model and the optimiser.  
Hence, attention needs to be paid to the trade-off 
between flexibility and performance. Most 
elementary operations which have a substantial 
computational overhead (e.g. involving a 
Hashtable, or using dynamic invocation),  are 
performed once for each run over the data, and 
are not of major concern. However, as pointed out 
by Rahman (2003), the use of a Model Runner 
which relies at each step on introspection for 
running the models, a performance ratio of about 
10 can be observed compared to the case of a 
model directly handling input and output time 
series. Note that the gain would however be less 
than this ratio for an overall calibration process. 
This is a clear example of a trade-off between 
flexibility and performance, since this is a 
consequence of the minimalist approach of the 
core models, and the reliance on discovery at run-
time of model properties. 

In order to improve performances without 
compromising flexibility, a tool has been 
implemented to generate once at run-time a 
wrapper for any temporal model. This wrapper 
handles time and time series explicitly as opposed 
to the core model, and by construction has an 
intrinsic knowledge of the model structure (see 
Figure 4). This is possible on the .NET platform 
since it contains advanced tools in its 
‘System.Emit’ namespace to generate additional 
code at run-time in an elegant fashion. 

 
Figure 3. Model wrapper generation 

The wrapper allows the model runner to avoid 
model introspection at run-time to set and read the 
values of its properties. The code generated can 
then be saved in a new assembly (DLL) and 
reloaded at next run-time. In a benchmark test 
where AWBM was run using the Pattern Search 
optimiser, run times were reduced by a factor of 
2.5 by using this method.. 

5. CONCLUSION 

The RRL has been developed to satisfy end-user 
needs in the water engineering community, but 
has also been designed to fit into a larger 
component-based modelling system known as the 
Catchment Modelling Toolkit. Its design has 
entailed the separation of features such as data 
I/O, visualisation, optimisation methods and the 
rainfall-runoff models themselves. In each case, 



these features have been developed as re-usable 
components that can be adopted in different parts 
of the Toolkit, and as code which is extensible in 
itself.  The use of the .NET environment and the 
TIME modelling framework in particular, aided 
the attainment of these objectives. 

A beta version of the RRL is now available for 
download at www.toolkit.net.au. Further 
development of the RRL is envisaged, an will 
largely be driven by the feedback from end-users 
and the evolving requirements from other projects 
involved in the Catchment Modelling Toolkit 
initiative. 
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