
A New Rainfall Runoff Software Library

J.-M. Perrauda, G. M. Podgerb, J. M. Rahmana, R. A. Vertessya

aCooperative Research Centre for Catchment Hydrology, CSIRO Land and Water, Canberra,
jean-michel.perraud@csiro.au

bDepartment of Land and Water Conservation, Sydney

Abstract: Lumped-conceptual rainfall-runoff models are a ‘stock in trade’ tool for those working in the
water industry and allied fields. However, there are many alternative models available, and sometimes
multiple implementations of the same model. The consequence of this is a plethora of models with different
operational features and different access arrangements. Similarly, there are a variety of optimisation tools
being used to calibrate such models, and they too vary greatly in terms of their style and access arrangements.
To address this issue we have developed a software application currently called the ‘rainfall-runoff library’
(RRL) and have made this available to end-users via the World Wide Web. The RRL includes some popular
lumped conceptual rainfall-runoff models, including AWBM, SimHyd and Sacramento. It also includes
popular model-independent and multi-objective parameter optimisation routines, including the Pattern
Search, Shuffled Complex Evolution and Genetic Algorithm methods. In addition, a custom parameter
optimisation method for AWBM is provided. The RRL has powerful visualisation and data handling
features. It is expected that end-users will be more willing to trial a range of models and parameter
estimation methods on their particular modelling problem as the ‘cost’ of moving from one method to
another is relatively minor given the common interface elements. The tools embedded within the current
version of the RRL are a sample only and we expect the software to grow significantly over the coming
years. For this reason, we have designed the RRL as an extensible system that simplifies the task of adding
models or optimisation methods, by using object introspection and metadata. This paper explores the
functional analysis, technical design and implementation of the RRL.

Keywords: Rainfall-runoff models; Calibration; Metadata

1. INTRODUCTION

Modelling of rainfall-runoff relationships has
been studied for several decades. One
consequence is the proliferation of a large number
of models implemented with different access
arrangements, software requirements, and data
formats. Despite this proliferation, or maybe
because of it, most engineers will use primarily
one model for any given task. However, papers
like those of Perrin (2001) suggest that while
some models may be identified as more robust,
the variability in the behaviour of catchments
ensures that no model will be the best in all cases.

The Cooperative Research Centre for Catchment
Hydrology (CRCCH) has built a library of
lumped conceptual rainfall-runoff models for
inclusion in its Catchment Modelling Toolkit. The
aim is to unify the tools commonly found in
rainfall-runoff model software implementations,
while still allowing for model specificities. The
library is implemented within the CRCCH
modelling framework TIME (The Invisible

Modelling Environment), and adopts many of its
software engineering paradigms.

One purpose of this library is to offer the water
engineering community a set of models that is
accessible through a common, user-friendly
interface. While this library is not meant to be a
tool for model development, it is structured such
that the effort required to add a new model or
optimisation method is minimal. Another goal of
the project is to develop hydrologic software
components which can be re-used within other
applications resident in the CRCCH Catchment
Modelling Toolkit. This paper presents the
rationale and the design of the Rainfall Runoff
Library (RRL), and how needs driven by this
project can lead to the production of generic re-
usable components in an integrated modelling
environment.

2. ANALYSIS OF NEEDS

The main population of users of the RRL are
found in the water engineering community. A
large number of model structures were reviewed

to determine the common patterns found in them.
As part of the analysis of likely needs of this
group, a previous implementation of AWBM
from Boughton et al. (1996) was carefully
examined, as this is one of the most widely-used
models in the Australian water engineering
community. Interestingly enough there were very
few properties found to be truly common to all
models, aside from the rainfall input data, which
indicated the need for a framework which could
accommodate idiosyncratic model structures.

The water engineering community’s major needs
in terms of an integrated RRL were identified as
follows:

• The ability to read datasets from existing
software implementations and
environments,

• A unified software interface containing
generic visualisation features found in
the majority of model implementations ,
as well as more advanced visualisation
capabilities,

• The ability to easily trial and compare
several models to avoid the one-model-
fits-all syndrome,

• A facility to add new rainfall-runoff
models with a minimum of development
effort,

• The ability to track and archive the tasks
performed leading to the calibration of a
model on a particular catchment and the
results.

Although most of lumped rainfall-runoff models
use a daily time step, our implementation of these
in TIME does not make any assumption about the
time step.

Most required tools, with the help of object-
oriented programming, are rather naturally
leading to the design of re-usable hydrologic
software components. Examples of such
components might include a Unit Hydrograph
tool, elementary “bucket” objects, or the discrete
probability density function generators used in
several calibration tools based on evolutionary
principles. In other cases the specific needs,
provided they are looked at within a broader
context, lead to the definition of more generic and
powerful mechanisms. Such an example might be
the code needed for axis transformations required
for the display of duration curves on a log-normal
scale.

The aspect of the RRL that required the most
development effort was the model calibration
tools. The optimisation methods we implemented

were categorised in three broad types: generic,
custom and manual. The generic optimisers treat
equally all parameters of a model, whereas
custom ones have an intrinsic knowledge of a
given model and its parameters. Tools based on
well-known procedures have been included, like
the Pattern Search from Hookes et al. (1961), the
method described by Rosenbrock (1960), Genetic
Algorithm (Wang, 1991), and the Shuffled
Complex Evolution, based on Duan et al. (1992)
and (1994). Although optimisation tasks in the
RRL are focussed on runoff time series, we have
implemented these various optimisation methods
such that they can be applied to other data types
such as rasters. In this way, they serve a more
general purpose in the Catchment Modelling
Toolkit.

The quality of the calibration of a model for a
given purpose depends a lot on the choice of an
appropriate objective function. When surveyed,
end-users declared a clear need to choose from a
range of objective functions in the calibration
process. They also stated the need to be able to
calibrate on the flow duration curve as well as
flow series. One of the reasons given for this was
to overcome time mis-matches between input
rainfall and flow data. One such mis-match
problem arises when daily rainfall records start
and end at 9am whereas daily flow records start
and end at 12 am.

3. DESIGN

3.1. System Architecture

The overall architecture of RRL follows
principles that are fairly standard in modern
software engineering practice. The application is
broken into four main parts (Figure 1). The data
Input Manager allows for the transparent addition
of new readers and writers for new time series file
formats. The Model Manager references all of the
rainfall-runoff models implemented in the RRL
and includes a collection of tools necessary for
model introspection (i.e. the discovery of model
variables relying on metadata; see next section).
The Calibration Manager acts as the coordinator
of all the objects involved in an optimisation
process, and as a single point of entry in this
regard for the code in the user interface layer.
Results and graphs are presented via the Display
Manager. These layers are discussed in more
detail in the following sections.

The Input Manager is a context-sensitive
component, which relies solely on the discovery
of model properties tagged with the Input
attribute. It also stores the definition of input
modifiers (e.g. monthly pan factors), which is a
generalisation of a feature found in the
Sacramento model implemented by the New
South Wales Department of Land and Water
Resource Conservation. Input data is thus left in
its original state while the correcting factors
applied are explicit.

 The Calibration Manager has the role of storing
information on the current state of calibration,
which includes primarily the parameter values,
the dates for calibration and verification, the type
of optimiser, and the selected objective functions.
It is thus hiding the complexity of the calibration
process from the user interface layer. Reflecting
the categorisation of the optimisers, two
interfaces have been defined: IGenericOptimiser
and ICustomOptimiser. As all automatic
optimisation schemes rely in one way or another
on the maximisation or minimisation of one or
several objective functions, it is clearly necessary
to standardise the behaviour of the optimisers in
this respect. If not, it easily leads to a bug-prone
situation. The convention adopted is to separate
the task of optimising from the task of calculating
the objective value. An IGenericOptimiser will
always minimise the objective, while an
Objective Calculator, which will be described in
further details below, is in charge of returning a
value which is to be minimised, relying on the
inspection of the Minimise attribute on the
method calculating the objective function.
Another characteristic of many optimisation
schemes is the parallel or successive calculations
performed by objects of the same type. Consider
for instance the case of a Pattern Search with
multiple start searches, or the evolution of some
ensembles or populations of points in a parameter
space (Genetic Algorithms). Many properties will
be transversal to all the objects of the same type,
for instance the number of points per population
and the maximum number of iterations. Also,
optimisers of all types share a few properties and
actions identical in purpose (e.g. notifying the
user interface of the status of the ongoing
optimisation). Due to these common properties an
optimiser with consistent mechanisms has been
structured into the framework of the RRL, where
the optimisers (e.g. a collection of Pattern Search)
and the individual search instances share the same
parent class, although only the former will
implement the interface IGenericOptimiser.

Figure 1 System architecture

3.2. Metadata attributes

The use of metadata attributes, as described by
Rahman (2003), is a prominent aspect of the
software design for the RRL and permits the
development of powerful and flexible model
processing tools and user controls. Metadata
attributes carrying the characteristics of model
parameters, such as Minimum, Maximum, and
Default Value, is of particular interest in the RRL.
For instance, the quality of model calibration is
very dependant on the specification of the
parameter space boundaries, hence the importance
of the correct definition of these attribute. Most of
the flexibility in the RRL is achieved through
attributes and their detection at run-time.
Examples of the use of attributes to address
specific needs associated with the analysis of the
RRL are discussed in the next section.

3.3. Objects and Components

All rainfall runoff models in the RRL inherit from
the same parent abstract class
‘RainfallRunoffModel’. This class plays a key
unifying role to detect the available models at
run-time. As indicated in the section of needs
analysis, it appeared that the vast majority of
properties and methods of the models could not
be deferred to a parent class. Hence, it was
decided that this class had to be kept very small in
order to leave room for the idiosyncrasies of each
model, such as the definition of its inputs, outputs
and parameters.

Following the design philosophy of TIME, the
individual models in the RRL do not explicitly
handle time. Instead, they utilise a simple
runTimeStep() method and the declaration of
inputs, outputs, and parameters as doubles or
integers. Keeping the models small is one
important reason which permits the easy addition
of a new model to the RRL, since no complex
time handling is necessary.

The Objective Calculator relieves the optimisers
of the task of calculating the goodness of fit,
while offering additional flexibility, such as the

ability to calibrate on a flow duration curve as
opposed to a flow series. A generic mechanism
has been designed, whereby the observed and
calculated runoff time series are, from the point of
view of the optimisers, transparently transformed
to the appropriate form prior to the calculation. A
Compound Objective Calculator class, with a
customisable property ‘compounding function’,
inherits from the Objective Calculator. A
calibration on several objectives is thus again
hidden from the optimiser. Any number of
objectives can be set up, although the RRL itself
currently uses a maximum of two.

Output time series are handled through the use of
a Recorder object. The Recorder uses internal
dictionary structures or ‘Hashtables’, as referred
to in .NET terminology, where keys are the fields
of the models, and the values the references to the
time series in which to store the output.
Combined with the run-time discovery of
properties tagged with the Output and State
attributes, this offers the option to record several
model properties of interest.

The visualisation components have two important
features worth mentioning here. First, an abstract

class AxisTransform has been implemented, so
that advanced visualisation capabilities required
by the RRL are addressed. The graphical canvas
has properties that can be set to any suitable
transform (e.g. LogTransform and
NormalTransform, Figure 2). Second, the use in
TIME of the Observer-Subject design pattern
permits dynamic updating of all graphs when
model parameters are changed.

3.4. Languages

The RRL is implemented in TIME, which in turn
is founded on the Microsoft .NET platform,
which offers multi-language capabilities. Most of
the RRL is written in C#, but Sacramento is
written in Fortran for .NET. It is also expected
that some more models will be implemented in
Visual Basic. Other possible coding languages
include J#, Eiffel, and Pascal, to cite a few.
Hence, one of the real virtues of the RRL is that
collaborators can contribute new models to it
using the language of their choice.

Figure 2. Duration curves of observed and calculated runoff, plotted on a log-normal scale.

4. CHALLENGES

4.1. Models with varying structure

Some rainfall-models are based on a varying
structure, and hence contain varying numbers of
parameters (for instance, the IHACRES model,
Jakeman et al. (1993)). This is a clear challenge
to the application of generic optimisation
methods, since this means that the parameter
space may change from one iteration to another in
the calibration process. This can be also the case
when models are using unit hydrographs and the
number of parameters of the model is varying
with the length of the memory of this unit
hydrograph. While optimisation tools can be
designed to handle varying structures and
parameters, they are very difficult to implement,
and the behaviour of the generic algorithms is
unknown.

4.2. Optimisation under constraint

It is not rare to find in a model some of its
parameters related by an equation or inequality.
For instance, AWBM can have three parameters
A1, A2 and A3 (partial surfaces) related by the
equations

1321 =++ AAA (1)

with ∀ (2) 0, ≥iAi

The problem of varying freely the first two
parameters in a truly generic optimiser while
keeping this constraint strictly true is not trivial.
There are many good analytical methods for
optimisation subject to constraints (see for
instance Arsham (2003) and references). The
implementation of one of the generic numerical
solution algorithms would here again require a
significant amount of work, due mainly to the
non-linearity of the response curve.

A more pragmatic approach to calibrating models
with parameters subject to constraints and also
dealing with models with a variable structure is
probably to design custom optimisers with
intrinsic knowledge of those models, and which in
turn can call generic optimisers.

4.3. Performance and flexibility

Performance is not really an issue when we are
considering running a rainfall-runoff model, even
over centuries of daily data, given the processing
power available these days on any personal
computer. However, the nature of the calibration
process is such that the complexity of the problem

is exponentially related to the number of
parameters in the model and the optimiser.
Hence, attention needs to be paid to the trade-off
between flexibility and performance. Most
elementary operations which have a substantial
computational overhead (e.g. involving a
Hashtable, or using dynamic invocation), are
performed once for each run over the data, and
are not of major concern. However, as pointed out
by Rahman (2003), the use of a Model Runner
which relies at each step on introspection for
running the models, a performance ratio of about
10 can be observed compared to the case of a
model directly handling input and output time
series. Note that the gain would however be less
than this ratio for an overall calibration process.
This is a clear example of a trade-off between
flexibility and performance, since this is a
consequence of the minimalist approach of the
core models, and the reliance on discovery at run-
time of model properties.

In order to improve performances without
compromising flexibility, a tool has been
implemented to generate once at run-time a
wrapper for any temporal model. This wrapper
handles time and time series explicitly as opposed
to the core model, and by construction has an
intrinsic knowledge of the model structure (see
Figure 4). This is possible on the .NET platform
since it contains advanced tools in its
‘System.Emit’ namespace to generate additional
code at run-time in an elegant fashion.

Figure 3. Model wrapper generation

The wrapper allows the model runner to avoid
model introspection at run-time to set and read the
values of its properties. The code generated can
then be saved in a new assembly (DLL) and
reloaded at next run-time. In a benchmark test
where AWBM was run using the Pattern Search
optimiser, run times were reduced by a factor of
2.5 by using this method..

5. CONCLUSION

The RRL has been developed to satisfy end-user
needs in the water engineering community, but
has also been designed to fit into a larger
component-based modelling system known as the
Catchment Modelling Toolkit. Its design has
entailed the separation of features such as data
I/O, visualisation, optimisation methods and the
rainfall-runoff models themselves. In each case,

these features have been developed as re-usable
components that can be adopted in different parts
of the Toolkit, and as code which is extensible in
itself. The use of the .NET environment and the
TIME modelling framework in particular, aided
the attainment of these objectives.

A beta version of the RRL is now available for
download at www.toolkit.net.au. Further
development of the RRL is envisaged, an will
largely be driven by the feedback from end-users
and the evolving requirements from other projects
involved in the Catchment Modelling Toolkit
initiative.

6. REFERENCES

Arsham, H., M. Gradisar, and M.I. Stemberger,
Linearly constrained global optimization: a
general solution algorithm with
applications, Applied Mathematics and
Computation, 134, 345–361, 2003.

Boughton, W., and R. Mein, AWBM catchment
water balance model, calibration and
operation manual,
www.catchment.crc.org.au, 1996.

Chiew, F.H.S., P.J. Scanlon, R.A. Vertessy, and
F.G.R. Watson, Catchment scale
modelling of runoff, sediment and nutrient
loads for the Southeast Queensland EMSS,
Technical Report 02/1, Cooperative
Research Center for Catchment
Hydrology, 2002.

Duan, Q., S. Sorooshian, and V. Gupta, Effective
and efficient global optimization for
conceptual rainfall-runoff models, Water
Resources Research, 28(4), 1015–1031,
1992.

Duan, Q., S. Sorooshian, and V. Gupta, Optimal
use of the SCE-UA global optimization
method for calibrating catchment models,

Journal of Hydrology, 158, 265–284,
1994.

Hookes, R., and T. Jeeves, Direct Search solution
of numerical and statistical problems, J.
Assoc. Comput. Mach., (8), 212–229,
1961.

Jakeman, A. J., and G. M. Hornberger, How
much complexity is warranted in a rainfall-
runoff model, Water Resources Research,
29(8), 2637–2649, 1993.

Perrin, C., C. Michel, and V. Andréassian, Does a
large number of parameters enhance model
performance? Comparative assessment of
common catchment model structures on
429 catchments, Journal of Hydrology,
242, 275-301, 2001.

Rahman, J.M., S.P. Seaton, and S.M. Cuddy,
Making Frameworks More Useable: Using
Model Introspection and Metadata to
Develop Model Processing Tools,
Environmental Modelling and Software, in
press, 2003.

Rosenbrock, H.H., An automatic method for
finding the greatest of least value of a
function, Computer Journal, 3, 175–184,
1960.

Sorooshian, S., Q. Duan, and V. Gupta,
Application of global optimization to the
Sacramento soil moisture accounting
model, Water Resources Research, 29(4),
1185-1194, 1993.

Tan, B.Q., and K.M. O’Connor, Application of an
empirical infiltration equation in the
SMAR conceptual model, Journal of
Hydrology, 185, 275-295, 1996.

Wang, Q.J., The genetic algorithm and its
application to calibrating conceptual
rainfall-runoff models, Water Resources
Research, 27(9), 2467-2471, 1991.

	INTRODUCTION
	ANALYSIS OF NEEDS
	DESIGN
	System Architecture
	Metadata attributes
	Objects and Components
	Languages

	CHALLENGES
	Models with varying structure
	Optimisation under constraint
	Performance and flexibility

	CONCLUSION
	REFERENCES

