
A Review of Interoperability Techniques for Models,
Data, and Knowledge in Environmental Software

A. Jolmaa and A. Rizzolib

aHelsinki University of Technology, P.O.Box 5200, 02015 HUT, Finland (ajolma@water.hut.fi).
bIDSIA, 6928 Manno, Switzerland (andrea@idsia.ch).

Abstract: An analysis of large and complex systems such as environmental systems linked to socio-
economic systems usually requires several simulation models. These simulation models must be able to in-
terface with each other in the conceptual level but there may also be some overlap in their application do-
mains. The way simulation models are used normally generates large amounts of data, which need to be ex-
plored or mined for the analysis and possible decision process. We propose a set of knowledge-based agents,
which share a common ontology to aid in the modeling and analysis in large and complex systems. An agent
is an active software entity, which is designed for a certain task or tasks. The main requirements for such
knowledge-based agents include ontology representation and storage, communication capabilities, and data
inspection tools. For example an agent should be able to actively study, e.g., a hard disk volume for available
information, discuss the findings with a knowledgeable person, and then produce and communicate a report.
The paper discusses the theoretical, technological, and other implications of the proposed approach versus
other paradigms. In particular we are interested in using XML as the main tool for ontology representation
and in supporting more than one level of conceptualization of the problem domain. Some technologies, nota-
bly application servers, also implement some services, which could be utilized for ontology sharing and agent
communication. Benefits and constraints of these are discussed.

Keywords: Interoperability, Ontology, Agents, Environmental Information Systems

1. INTRODUCTION

Examining any big environmental problem re-
quires cooperation of experts and interdisciplinary
analysis. Three main groups of experts, whose
contribution and expertise must be amalgamated,
are physicists, engineers, and social scientists,
including economists. Geophysicists usually con-
tribute by developing simulation models of vari-
ous parts of the physical system. Engineers pro-
vide management models and technological solu-
tions. Socio-economists contribute by information
and analysis on how various people behave or
will react to changes. Due to the complexity of
the problem domain and multiple actors the in-
formation management of such projects faces
several problems. These problems can usually be
categorized as interoperability problems.

Interoperability is a technical term but the prob-
lem is not only technical. Without interoperabil-
ity, integration is possible, but cumbersome, and
its effectiveness is sensibly decreased, as integra-
tion is an essential element of the problem solv-
ing. Modern environmental assessment proce-
dures and methodologies call for an ever more
intensive use of integration (see for example the
proceedings of the recent conference iEMSs 2002
http://iemss.org/iemss2002). Integration is the

keyword and it must be accomplished across dis-
ciplines, across temporal and spatial domains, to
deepen our understanding of the multifaceted
complexity of environmental systems.

At the heart of interoperability problems lay the
different ways to organize information and
knowledge in different disciplines. It is thus natu-
ral to turn to generic research on information and
knowledge for some answers. According to
Guarino (1995) AI research has had two distinct
perspectives on knowledge. The first, traditional
approach is to view knowledge as functional util-
ity for reasoning. In the language of geophysicists
this means that the focus is on simulation model
building. The second view of AI research sees
knowledge having task-independent value. The
task-independent value of knowledge is enhanced
when parts of knowledge are organized into dis-
tinct conceptualizations. These conceptualizations
are called ontologies and they have according to
Guarino also potential in large-scale integration.

A lot of philosophical and AI research was largely
theoretical considerations without real-world ap-
plications. Evolution of computing, especially
networking, has lead to fruitful exchange of re-
search results and development of new computing
paradigms like agent-based computing and the
Semantic Web. Agent-based computing has been

proposed as a suitable solution for problems,
which require active and "smart" modules com-
municating with high-level messages (Nwana and
Ndumu 1999). The Semantic Web (Berners-Lee
et al 2001) is a vision for the World Wide Web,
which builds on XML-based tools for ontologies.

Nwana and Ndumu (1999) have listed problems
in distributed system development, which have
motivated research on agent-based systems:

• The problem of information discovery: e.g., a
description of a model tells me I need this
kind of data, where do I find it?

• The communication problem: e.g., how to
extract the needed information from the data
stream coming from a source?

• The ontology problem: e.g., how do we know
that "precip" at one message is the same as
"precipitation" in another message?

• The legacy software problem: e.g., how to
extract information from a binary file of un-
known format created by legacy software?

• The reasoning and coordination problem:
e.g., how to get from the functional descrip-
tions of the problems to the actual tasks and
their scheduling and coordination between
subsystems?

In this paper we investigate the possibility and
benefits of the merger of the more traditional in-
teroperability technology with the results of AI
research. This paper is organized as follows. In
section two we investigate the issue of technical
interoperability. Section three examines one solu-
tion to the interoperability problem in more detail,
namely XML-based technology. Section four
describes ontologies and agents and examines
how agents could be the glue to keep the various
interoperable components together. Section five is
the discussion of the findings of this paper.

2. INTEROPERABILITY

2.1. Introduction

Interoperability is defined here as the ability (of
the user) to use more than one system together as
one. This includes requesting and receiving ser-
vices from one system and utilizing the results in
requesting and receiving services from another
system. Interoperability is not a new concept;
towards the end of the 80s the lack of it was a
common curse of a system administrator manag-
ing a wide and heterogeneous network of com-
puters, where the departments of a same organiza-
tion used different operating systems, software
tools, and databases.

Interoperability relies on requesting and receiving
services. A service can be conceptualized as an
exchange of resources. An example of a resource
is a description. In environmental information
systems descriptions are: (i) descriptions of the
problems, (ii) descriptions of the environmental
system, (iii) descriptions of the models or other
tools, (iv) descriptions of the observation data,
and (v) descriptions of general knowledge. Other
resources include (virtual) machines capable of
processing these descriptions and other generic
tools.

At first, the focus on interoperability research was
on the ability of making different operating sys-
tems communicate in a networked environment.
This technical problem of interoperability was
solved thanks to the widespread adoption of
shared protocols for communication networks,
such as TCP/IP, on which the Internet is based.
Yet, interoperability was out of immediate reach,
since seamless data exchange was still prevented
by syntactical problems: a document, stored on a
UNIX based workstation, could not be accessed
from a PC-based computer unless appropriate pre-
processing was performed. Different research
groups set to work to overcome this limitation and
the results can be found in the software packages
we now use every day. Among the various prod-
ucts which overcame syntactic interoperability we
mention: ODBC, CORBA, and XML.

ODBC, the Open Database Connectivity is a
widely accepted Application Programming Inter-
face1, developed by Microsoft, that allows uni-
form access to a wide range of database systems.
It inserts a layer between the client application
and the database; this layer hides the details of the
database behind a general and published abstrac-
tion level. ODBC uses SQL2 as an enabling tech-
nology to communicate with the data source. Spe-
cific drivers are designed for most database sys-
tems. The ODBC API has been ported to various
operating systems and can be used within many
programming languages, thus supporting real
interoperability.

CORBA, the Common Object Request Broker
Architecture by the Object Management Group is
a software architecture and infrastructure that
allows computer applications, running on differ-
ent machines, under different operating systems

1 ODBC specification and other material is avail-
able by anonymous ftp from
ftp://ftp.microsoft.com/developr/ODBC
2 SQL is Structured Query Language, a language
for communicating with a relational database.
Several SQL and SQL related standards exist.

to work together on a network3. CORBA has been
the first effort to go beyond the notion of ‘remote
procedure call’, which we first find in UNIX net-
worked systems. In CORBA the programmer
wraps his/her application publishing its interface
thanks to the IDL (Interface Description Lan-
guage), which is defined generically but imple-
mented specifically for every language which
supports CORBA. Such a wrapped application
can then announce its services on a network.
Other applications which know about this pub-
lished interface can therefore use the services
provided by the remote application. It is the Ob-
ject Request Broker that manages the requests
coming from client applications and directs them
to the servers. Microsoft developed their own
flavor of CORBA, first in a local environment
thanks to the COM (Component Object Model)
architecture, then distributing it in a homogeneous
(all Windows) network (the DCOM, for Distrib-
uted COM) and finally making the step to open
up the architecture to other operating systems
with the .Net architecture. Sun Microsystems’s
Java language did practically the same imple-
menting the Java RMI (Remote Method Invoca-
tion) architecture.

CORBA and similar approaches have not yet
reached the widespread adoption and popularity
of ODBC. The most plausible reasons are the
computational burden, the difficulty of setting up
a distributed network of transparent applications,
the slowness of the implemented code, and possi-
bly the lack for the real need of distributed com-
puting, but we will come later on this last point.

 Finally, XML, the eXtensible Markup Language,
developed and promoted by the World Wide Web
Consortium4, W3C, addresses interoperability at
the document level. XML is a derivative of
SGML (Structured General Markup Language).
XML was introduced as a tool for interoperability
between a Web client, Web server, and databases;
furthermore, user interface issues were high on
the list of requirements (Bosak, 1997). While
CORBA and its companions allows one to re-
motely invoke an application, it does not say any-
thing on the data format requested from the re-
mote application and therefore a way to specify
this was needed and XML is the answer.

3 CORBA specification and other material is
available from http://www.omg.org/technology/

documents/corba_spec_catalog.htm
4 XML specification and other material is avail-
able from http://www.w3.org/XML/

3. XML TECHNOLOGY

In the following several XML technologies are
shortly described. The description is not technical
but tries to describe the technology in the context
of this paper.

From the point of view of a programmer an XML
document is either a stream of events or a tree.
The stream of events approach is faster since it
can be implemented along with parsing and it
requires less memory. The tree view is available
only after parsing an XML document, it is more
versatile but also requires more memory for the
data structure. There is a standardized API called
Document Object Model (DOM) for the tree view
of an XML document. DOM has been imple-
mented in many programming languages.

XML Namespaces is a method of declaring (in an
XML document) that certain element types and
attributes should be interpreted in a specified con-
text or sense. An XML namespace thus creates a
vocabulary and more than one vocabularies can
be safely mixed in one document which is a
strong feature supporting interoperability. The
specification is vague but seems to work in prac-
tice (Bourret 2000). Namespaces makes it possi-
ble to introduce and use crude ontologies in
XML.

There are several technologies for specifying the
schema, i.e., grammar, of XML documents. The
best known is DTD (from SGML origin), XML
Schema (from W3C), and Relax NG (from OA-
SIS). The schema does not imply any semantics
(as a namespace may) but it has great practical
value. A schema is of value to a user creating
documents since s/he can be given interactive
help about what is expected/valid at any given
point in the document. A schema is of value to
programmers since it greatly reduces the need of
writing assertions.

XML Path Language is an expression language
for referring to certain parts of an XML docu-
ment. XPath treats an XML document as a tree of
nodes and defines a way for expressing each node
as a string. A string expression in XPath can ex-
pand to several nodes. XPath is a relative to regu-
lar expressions which are used for text processing,
e.g., for automated conversions from ASCII data
files to database insertions.

XSL Transformations is a part of XML Style
sheet Language (XSL). The other parts are XPath
and a specific vocabulary for specifying format-
ting semantics. XSL is originally intended for
XML → HTML transformations, i.e., for visualiz-
ing XML documents, but it can be used as a gen-
eral tool for XML → XML transformations. XML
→ XML transformations have potentially great

value in transforming structured documents from
one ontology or application to another.

The Resource Description Framework (RDF) is a
foundation for processing metadata. As metadata
is data about data, the RDF model is about saying
that a certain thing (resource, concept, or object)
has a certain property, and that the value of the
property is something (another resource, concept
or object). Thus basic RDF statements are triples
of subject, predicate, and object. RDF is a frame-
work and only provides the basic vocabulary for
(XML) metadata documents. The semantics of the
metadata must come from some other source, the
Dublin Core, for example.

The Web Ontology Language (OWL) is on-going
work of W3C aimed at producing an XML and
RDF based language for ontologies. OWL is
based on the DARPA Agent Markup Language
(DAML+OIL). OIL is Ontology Inference Layer
developed separately.

A simple example of a RDF description (triple),
which utilizes property from DAML vocabulary,
is:
<rdf:Description rdf:about="#sadanta">
<daml:samePropertyAs
rdf:resource="http://hydrology.org/voca
bulary/precipitation"/>
</rdf:Description>

This description tells us that the local concept
"sadanta" (precipitation in Finnish), is the same as
the concept "precipitation" in the vocabulary of
some (hypothetical) international organizations.
Given this description any RDF aware software
which handles local documents and documents –
or services – conforming to the international stan-
dard would have no problems in doing the right
thing in this respect. This is an example where the
RDF and OWL go beyond schema languages (Re-
lax NG, XML Schema).

Knowledge stored as RDF statements and OWL
object structures support classification by infer-
ence. Classification by inference is based on ob-
ject's membership in classes (in sets in fact)
which have certain properties, for example if we
know that Kirkkojärvi is a humic lake, and humic
lakes have low Secchi disk depth, then we can
infer that Kirkkojärvi has a low Secchi disk depth.
This works also the other way. If we have two
pieces of information: "humic lakes have low
Secchi disk depth" and "Kirkkojärvi has a low
Secchi disk depth", the first one in our knowledge
base and the other in our database, we could
query "what are the potential humic lakes de-
scribed in the database".

4. ONTOLOGIES AND AGENTS

4.1. Ontologies

Ontology is a philosophical discipline, a study of
things that exist a-priori; a particular system of
categories accounting for a certain vision of the
world; or an engineering artifact, constituted by a
specific vocabulary, used to describe a certain
reality, and the intended meaning of the vocabu-
lary words (Guarino 1998). We shall stick to the
last use of the word in this paper.

Ontology as an engineering artifact, devised as a
part of IS development, is a generic concept,
which covers data models of database engineer-
ing, object models of software engineering, de-
scriptions of simulation models of systems engi-
neering, and knowledge models of knowledge
engineering. Ontologies are agreements, some-
thing to commit to. A large part of our knowledge
can be expressed as ontologies; the rest is rules
how to use and reason with the things described
by ontologies.

Guarino and Welty (2000) have proposed four
notions as the basis of formal methodology for
ontology engineering: identity, unity, rigidity, and
dependence. Identity of a thing is a property by
which it can be distinguished from other similar
things. The interesting thing about identity is that
physical entities have a stronger identity (Lake
Windermere is always Lake Windermere no mat-
ter what – at least to a certain point) than roles for
example (the management board of Lake Win-
dermere changes from time to time). Guarino and
Welty call properties (like being a lake), which
hold across ontologies ‘rigid’. A non-rigid prop-
erty is something, which is assumed based on
situation (“which hat does the person hold
now?”). Unity is a concept, which holds things,
made of parts together and defines a thing as a
sum of its properties. The unity of a thing may
change when we move from one ontology to an-
other even if the identity stays the same. A typical
example is how differently people with different
backgrounds see the same lake. Dependence is
according to Guarino and Welty a very general
meta-property of things. One form of dependence
is required properties. For example in one ontol-
ogy a body of surface water is not a lake unless it
is at least 200 meters wide in at least one direc-
tion. Different dependencies in different ontolo-
gies create great interoperability problems.

4.2. Agents

An agent is an individual capable of decisions and
actions within an environment, which it can ob-
serve to some extent. An agent should also be
able to socially interact and communicate with

other agents (Wooldridge and Jennings 1995).
From the software engineering point of view
agent-based programming can be seen as a new
paradigm (Wooldridge and Jennings 1999).

A software agent is a program or an object cre-
ated by a program. In the first case the environ-
ment of the agent is "real" since the OS provides
it and – if the computer is networked – the OS of
other computers and devices connected to the
network. In the second case the environment of
the agent is simulated (not "real"). The concept
of an agent is interesting since by definition every
one of us is an agent. Thus the results of psycho-
logical, social, and decision analysis research – to
name just a few – are all applicable.

Agents are intentional systems (Wooldridge and
Jennings 1995), which operate on information
(beliefs or knowledge) driven by a pro-attitude
(intention, obligation, goal, etc). The pro-attitude
can be expressed as utility functions. Resources
available to them and actions possible to them
limit what agents can do. Agents typically also
have a notion of cognitive state.

A software agent can be designed by defining a
utility function for it. The utility function is a real
number valued function of actions and observa-
tions. The agent is designed in such a way that it
tries to maximize its cumulative utility. This is in
contrast to traditional programs which are de-
signed for a task or tasks and do not have the con-
cept of utility. This traditional behavior of pro-
grams is a special case for an agent program; the
programmer or the user of an agent program
needs just to define the outcome of a task, which
then becomes the goal of the agent, and then pro-
vide the agent the necessary knowledge about the
actions that will lead to the finalization of the
task.

5. DISCUSSION

We can observe three computationally different
types of ways to achieve interoperability: (i) re-
questing data or documents, (ii) exploiting the
computational resources of a network node
through a published interface, and (iii) sending
executable instructions of some form from one
network node to another.

In all of these interoperability scenarios we have
an information exchange, which is based on the
assumption that once the syntactic translation is
made, the semantics comes without saying. This
was the case in monolithic applications, where the
modeler built an application from top to bottom,
using internal components, or components which
had been re-engineered to be used within the ap-
plication. In distributed, multi-tiered applications,
which are required in integrated modelling, this is

not valid anymore. The modeller cannot go on
and link her model outputs to a remote model
inputs without making sure that the meaning of
her outputs corresponds to the meaning of the
remote model’s inputs. Such an assertion can be
made by close inspection of the remote source
code, by reading the remote model documentation
but these are time consuming and difficult tasks.

The current interoperability problem arises from
the differences and incompatibilities between the
ontologies of different systems. The problem is
thus on the semantic level of the modelling envi-
ronment. The paper of Kokkonen et al (2001)
describes an approach and a technical solution to
the problem linking a database to a model. The
semantic level of the linking relies solely on the
knowledge of a human user. It is easy to see that
knowledge encoded in RDF descriptions as above
can provide at least a partial solution to this prob-
lem. The next generation of interoperable applica-
tions will need to address the issue of semantics,
that is the ability to represent knowledge in a
structured and re-usable way.

5.1. Are there feasible solutions in sight?

As quickly presented in Section 2.1, ODBC,
CORBA, and XML are technological solutions to
various interoperability needs. All of them define
or employ formal or semiformal languages for
interfaces and communication. It is perfectly fea-
sible to interlink various data sources, models,
and other applications with these tools. The syn-
tactic level of these linkages is usually nothing
but a technical problem, easily overcome by pro-
gram code. There is also little or no distinction
between the case where the requested service is
running in the same computer and the case where
it is running elsewhere in the Internet.

Yet they do not address the semantics problem.

XML is the general background in most current
efforts in putting the results of theoretical re-
search in knowledge engineering into practice.
Previously there have been some notable failures
in similar efforts (For example the case of
Telescript and General Magic, (Magdanz et al,
1997)) but currently this does not seem to be the
case for XML. In one sense the XML technology
represent a shift from programming to writing
documents. For example XSL documents can be
seen as documents, which describe how docu-
ments are changed.

This helps a lot in content management, but what
about semantics?

As shown in Sections 3 and 4, the answer to this
can be find in the efforts to create shared ontolo-
gies. Ontologies are services or metadata associ-

ated with services, which are needed to manage
and organize knowledge. They do help in estab-
lishing the semantic relationships among the ob-
jects we want to model.

The open issues, for environmental modelling,
are: (i) creation of shared ontologies for the vari-
ous fields of environmental modelling; (ii) crea-
tion of software tools able to access and use the
ontologies and to provide factual help in building
distributed environmental information systems,
including environmental models.

The former issue calls for the co-operation of a
wide group of research networks and, while no
co-ordinate approach exists up to date, we expect
to see the first efforts towards the end of 2003.

The latter issue is the more interesting for the
software engineer and the developers. We have
proposed in Section 4 an approach based on
agents, in accordance with the path shown by
Berners-Lee and others in their seminal work
(Berners-Lee et al., 2001).

In our view, an agent needs the ontology when it
fulfills its tasks of matching data with a simula-
tion model, using a solution template for a prob-
lem, or interprets a goal given to it by a user or
another agent. Ontologies are engineering arti-
facts but agents can also help in writing them,
since a lot of useful knowledge can be
downloaded or reasoned from the Internet.

Above an EIS was described as a system, which
consists of subsystems making and serving re-
quests. The agent-based paradigm, which is based
on communication and goal-orientation, should fit
rather well to this. Two classes of agents emerge:
(i) system-level agents, which communicate with
users and service providers, and (ii) service pro-
vider agents, which communicate with system-
level agents and try to fulfill requests by the
available resources.

In conclusion, we believe that future environ-
mental information systems will need to address
the issue of semantic interoperability. This will
require an explicit notion of ontologies and map-
pings between ontologies.

6. ACKNOWLEDGEMENTS

This research has been partly funded by grants
from Maa- ja vesitekniikan Tuki ry. and Ministry
of Agriculture and Forestry of Finland to the first
author.

7. REFERENCES

Berners-Lee, T., Hendler, J., Lassila, O. 2001.The
Semantic Web. Scientific American, May
2001.

Bosak, J. 1997. XML, Java, and the future of the
Web. http://www.ibiblio.org/pub/sun-
info/standards/xml/why/xmlapps.htm

Bourret, R. 2000. Namespace myths exploded.
http://www.xml.com/pub/a/2000/03/08/na
mespaces/index.html

Guarino, N. 1995. Formal ontology, conceptual
analysis and knowledge representation. In-
ternational Journal of Human and Com-
puter Studies. 43(5/6): 907–928.

Guarino, N. 1998. Formal Ontology and Informa-
tion Systems. In N. Guarino (ed.) Formal
Ontology in Information Systems. Pro-
ceedings of FOIS'98, Trento, Italy, 6–8
June 1998. IOS Press, Amsterdam: 3–15.

Guarino, N. and Welty, C. 2000. Towards a
methodology for ontology-based model
engineering. In Proceedings of ECOOP-
2000 Workshop on Model Engineering.
Cannes, France.

Kokkonen, T., Jolma, A. and Koivusalo, H. 2001.
Interfacing Environmental Simulation
Models with Databases using XML.
MODSIM 2001, Proceedings of the Inter-
national Congress on Modelling and Simu-
lation, Canberra, Australia, 10-13.12.2001.
pp. 1643-1648.

Magdanz, E., Rau, N., Bernstein, N. 1997. Strate-
gic Computing and Communications
Technology. Group H: Standards. Final
Report. http://www-
inst.eecs.berkeley.edu/~eecsba1/s97/report
s/eecsba1h/paperTOC.html

Nwana, H. S. and Ndumu, D. T. 1999. A Perspec-
tive on Software Agents Research. The
Knowledge Eng. Rev. 14(2): 125–142.

Wooldridge, M. and Jennings, N.R. 1995. Intelli-
gent Agents: Theory and Practice. The
Knowledge Eng. Rev. 10(2): 115–152.

Wooldridge, M. and Jennings, N.R. 1999. Soft-
ware Engineering with Agents: Pitfalls and
Pratfalls. IEEE Internet Computing. 3(3):
20–27.

	INTRODUCTION
	INTEROPERABILITY
	Introduction

	XML TECHNOLOGY
	ONTOLOGIES AND AGENTS
	Ontologies
	Agents

	DISCUSSION
	Are there feasible solutions in sight?

	ACKNOWLEDGEMENTS
	REFERENCES

