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Abstract: In this paper we will focus on spatialized decision problems which we propose to model in the 
framework of (highly) multidimensional Markov Decision Processes (MDPs) which exhibit only local 
dependencies between variables. We propose to approximate a Markov chain on a multidimensional random 
variable by a Markov chain on a set of  weakly dependent  random variables. This allows to (approximately) 
solve multidimensional MDPs with hundreds of variables, to the price of a loss of exactness of the process 
model. The method is mostly empirical yet, however it allows to deal with decision problems far larger than the 
one usually dealt with in the MDP framework. 
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1. INTRODUCTION 

Markov Decision Processes (e.g. Puterman, 1994) 
are commonly used for modeling and solving 
sequential decision problems under uncertainty in 
Artificial Intelligence. However, environmental 
management problems can not be easily modeled 
and solved in this framework, due to the high 
dimensionality of their state and action spaces 
which put them out of reach from the usual 
enumerative Dynamic Programming algorithms. 
This dimensionality problem is especially present 
when spatial features of the underlying processes 
are taken into account in the management problem, 
which is often the case in environmental 
management problems such as weeds dispersal  
control, fire protection or animal populations 
dispersal control. 

Several ways to deal with the dimensionality 
problem in MDPs have been proposed in the past. 
They have in common the fact that they exploit 
“independence”  or “weak dependence” between 
state variables of the process. Among these 
methods we can point out State aggregation 
methods (Dearden and Boutilier, 1997), State space 
decomposition methods (Dean and Lin, 1995), 
Multi-agents Reinforcement Learning (Litman, 
2001) and Bayesian Networks (Pearl, 1988). See 
(Garcia and Sabbadin, 2001) for pointers to 
references. 

In this paper we propose an approximation method 
for multidimensional Markov chains which can be 
used for approximately solving Markov Decision 
Processes. Although different from the approaches 
we have just quoted, it is also a kind of 

decomposition method. We will propose to 
approximate the Markov chain on a 
multidimensional random variable by a Markov 
chain on a set of  “weakly dependent”  random 
variables. This will allow to tackle problems with 
hundreds of variables, to the price of a loss of 
exactness in the process model. In the next Section 
we will briefly introduce Markov Chains and 
Markov Decision Processes. In Section 3 we will 
describe Multidimensional Markov chains and the 
dimensionality problem on a simple fire 
propagation example. In Section 4 we will describe 
the approximation method we propose as well as an 
empirical validation method. Finally, in Section 5 
we will show how our Markov Chain 
approximation scheme can be used in order to 
represent and solve spatialized decision problems.  

 

2. MARKOV CHAINS AND MARKOV 
DECISION PROCESSES 
 

2.1 Discrete Time Markov Chains (DTMC) 

Let us give some basic definitions concerning 
Markov Chains: 

Definition 1 (Discrete Time Markov Chains) Let 
S be a set of states and H the horizon (H is a finite 
or countable set of time steps). A discrete time 
Markov chain is a set (Xt)t∈H of random variables 
such that Xt∈S, ∀t. 

Definition 2 (Homogeneous Markov Chains) An 
Homogeneous Markov Chain is a Discrete Time 
Markov Chain which verifies the following 
property: 



∀t, ∀x0,...,xt+1∈S,  In terms of discrete Markov Chains, let Pπ be the 
transition matrix associated to a policy π (Pπ(i,j) = 
P(i, π(i),j)). Then, to π we can associate a Markov 
chain (Xt

π)t∈N such that Xt
π = Pπ

t.X0, ∀t≥1. It can be 
shown that Va

π (s) = limt→H  Σs Xt(s).R(s, π (s)) = Σs 
XH(s).R(s, π (s)) (see, e.g. (Altman, 1999)). Vd

π (s) 
can also be expressed as limit of the integral of R 
with respect to a random variable, but in this case, 
the Markov process is not stationary. 

P(Xt+1=xt+1| X0=x0,...,Xt=xt)= P(Xt+1=xt+1| Xt=xt).  

P(Xt+1=xt+1| Xt=xt) is denoted pij
t if xt=i and xt+1=j. 

The Markov Chain is homogeneous if pij
t does not 

depend on t. 

The transition matrix of an homogeneous Markov 
chain is the matrix P=(pij) i,j∈S. 

Definition 3 (accessibility, recurrent states, 
recurrent class) A state j is accessible from a state 
i iff there exists a finite n, and a sequence of states 
i1=i,...,in=j such that every transition ik→ ik+1 has a 
positive probability. A state i is recurrent iff for 
every j accessible from i, i is also accessible from j. 
If i is recurrent, A(i), the set of states which are 
accessible from i forms a recurrent class. 

Now that we have recalled that the solution of a 
MDP can be obtained from the limit of a Markov 
chain, we will focus for a while on the 
approximation of multidimensional Markov chain 
limits, before we come back to MDPs in Section 5. 
But first, let us briefly recall why dimensionality is 
a problem through an example. 

 Definition 4 (periodicity) A recurrent class R of a 
Markov chain is periodic iff there exists a partition 
S1,...,Sm (m>1) of R such that all transitions from Sk 
lead to Sk+1 if k≠m and to S1 if k=m. The class is 
aperiodic iff it is not periodic. A Markov chain is 
periodic (resp. aperiodic) iff it contains at least one 
(resp. no) periodic class. 

3. MULTIDIMENSIONAL MARKOV 
CHAINS 
 

3.1 Example of multidimensional Markov chain 

We will model an example of fire spread on an area 
with different soil occupancies (forest, grass, 
lakes...) through the use of a multidimensional 
Markov chain. The area is represented by a grid 
(Figure 1), and to every cells are associated soil 
occupancies, which have different probabilities of: 
fire ignition, fire extinction and complete burning. 
In addition, fire diffusion probabilities are assigned 
to the different directions (north, east...), reflecting 
the effect of the wind. Actions are not considered in 
the example, but could be through their effects on 
the different probabilities and coefficients. 

We may also be interested in the long-term 
behavior of a Markov Chain, i.e. X∞ (in this case 
H=∞). 

Proposition 1 (limit behavior of an aperiodic 
Markov Chain) If (Xt)t∈N is aperiodic, X∞=limn→∞ 
Xn exists and X∞=limn→∞ Pn.X0.  

Furthermore if the chain possesses a unique 
recurrent class, X∞ is independent from X0. 

 

2.2 Markov Decision Processes (MDP)  

The standard discounted MDP model (Puterman, 
1994) is defined by a tuple (S, A, P, R). The 
horizon H is either finite or infinite, S is the finite 
set of possible states, A is the  finite set of available 
actions, P : S×A×S→[0,1] the transition probability 
function (P(i,a,j) is the probability that j results 
from i when a is applied), R : S×A→ℜ is a reward 
function. A deterministic policy π : S×{0..H}→A is 
a mapping from states and time steps to actions. 
Policies may be stationary, in which case π is 
independent of t. 

Figure 1. Soil occupancies, dark to clear, forest, 
grass, water and hazard zone. 

The discounted value of a policy in a given state s0 
is defined by : 

The four soil occupancies are: forest, grass, water 
and fire hazard zones. α, β, and γ are respectively 
the ignition, extinction  and complete burning 
probabilities (Table 1). 

Vd
π (s0) = E[Σt=0..H  γt.R(st, π (st)) ]   (1) 

where 0<γ≤1 is the discounting factor (when H=∞, 
γ<1 so that the sum converges).  

 The average value of a policy is defined as : 
 Forest Grass Water Fire 

hazard 
Va

π (s0) = limT→H  (1/T).E[Σt=0..T  R(st, π (st)) ]   (2) 



α 0 0 0 0.1 
β 0.1 0.4 1 0.2 
γ 0.1 0.3 0 0.2 

Table 1.  Soil occupancies parameters 

When describing the fire status of the grid, each of 
the 144 cells can take one of the following states: 
1=no fire, 2=burning, 3=burnt. So, the global status 
is described by the global variable x={x1,...,xN} 
(N=144). Since the fire evolution is random, it will 
be represented through the global random variable 
Xt : x1,...,xN → [0,1] which has 3N components. We 
want to determine Γ, the matrix of the Markov 
process governing Xt. In order to do this, we first 
determine the relation Xt+1=f(Xt) and then express it 
in matrix form Xt+1=Γ.Xt, following the steps : 

Xt  (local ) Yt
 = γ(Xt)  (diffusion) Xt+1 = δ(Yt). 

The fire diffusion probabilities, corresponding to a 
wind coming from the west, are : East = 0.35, 
North = South = 0.2, West = 0.1. 
 
3.2 Local evolution  

The starting parameters are : ignition probability 
αi=P(Yt

i i =2|Xt
ii=1), extinction probability βi=P(Yt

i i 

=1|Xt
ii=2) and complete burning probability γi = 

P(Yt
ii=3|Xt

ii=2). 

The starting parameters are : ignition probability 
αi=P(Yt =2|Xt =1), extinction probability βi=P(Yt

=1|Xt =2) and complete burning probability γi = 
P(Yt =3|Xt =2). 

Thus, local transitions can be represented 

by P and Y
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Thus, local transitions can be represented 

by P and Yt Pi.Xt  

The transition probability from (x1,...,xN) to 
(y1,...,yN) is  
The transition probability from (x1,...,xN) to 
(y1,...,yN) is  

Yt(y1,...,yN) = γ({x1,...,xN})(y1,...,yN)  = P1(y1|x1) . 
P2(y2|x2) ... PN(yN|xN). 

Yt(y1,...,yN) = γ({x1,...,xN})(y1,...,yN)  = P1(y1|x1) . 
P2(y2|x2) ... PN(yN|xN). 

More generally,   More generally,   

Yt(y1,..,yN) = (γ(Xt))(y1,..,yN) = 

(4) 

Y

{ }
)y,x(P).x,...,(x i

0,1,2)x,...,(x
i

N

1i
iN1

N
∑ ∏

∈ =

tX
{ }

)y,x(P).x,...,(x i
0,1,2)x,...,(x

i
N

1i
iN1

N
N1

∑ ∏
∈ =

tX

t(y1,..,yN) = (γ(Xt))(y1,..,yN) = 

(4) 
N1

  

3.3 Diffusion 3.3 Diffusion 

The  parameters are the fire diffusion probabilities 
from cell i to j :
The  parameters are the fire diffusion probabilities 
from cell i to j : ( ) { }²1..N(ij)ijd

∈
, 

where dij=P(xj
t+1=2|yi

t=2, yj
t=1).  

Let Ij =  {i1,...,ipj} = {i / dij>0} be the set of cells 
from which there can be a diffusion to cell j. It will 
be assumed that |Ij| << N. We have 
P(xj

t+1=2|y1,...,yN) =  P(xj
t+1=2|yi1,...,yipj, yj). If we 

let dj= Πi∈I,yi=2 (1- dij) (dj=1 if {i∈I, yi=2} is empty), 
then: 

P(xj
t+1|yi1,...,yipj, yj) can be expressed as a matrix : 
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Finally,   

 Xt+1=δ(Yt)=∑(y1...yN)Yt(y1...yN).Πj=1..N Qj(xj
t+1,yj)    

(5) 

 

3.4 Monodimensional Markov Process 

From now on, we have the following relation on 
multidimensional (dimension N) random variables : 
Xt+1=δ(γ(Xt)). It is possible to express it as a 
stationary Markov Process over monodimensionnal 
random variables over a finite state space of 
cardinal 3N (X’t+1 = P’.X’t) thanks to the following 
bijection ϕ : {0,1,2}N → {0,1,2,...,3N}, 
(x1,...,xN) → x’=∑i=1..N xi. 3i. 

However, the matrix P’ is of dimension 3N×3N, 
which makes the process useless for N greater than 
a dozen, far from what we would like to be able to 
handle (several hundreds)! This motivates the 
approximation method that we suggest next. 

  

4. APPROXIMATING 
MULTIDIMENSIONAL MARKOV 
CHAINS 
 

4.1 Multidimensional approximation model 

As we have seen, the size of the random variable 
involved in the N-dimensional Markov process is 
3N. As this prevents us from modeling realistic 
problems, we propose to approximate the N-
dimensional variable Xt by a product 
X’t=δ(Yt)=Πi=1..NXi

t of “independent” variables (the 
approximation process is described in Figure 2).  

 

 

Yt
i           Zt

i          Z’t
ij    Xt+1

i 

Figure 2. Multidimensional Markov chain 
approximation. 

The diffusion equation can be written (with a 
renumbering of the neighbor cells from 1 to 5) : 



Zt
i(z1...z5)= f(Yt

i) = ∑y=1..3 Yt
i(y).Πj=1..5 Pi(zj| y) with 

Pi(zj| y)=  .  (6) 
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δ(j,1)=1 if j=1, 0 else. 

The principle of the approximation that we use is 
the following. We write Z’t

i(z1...z5) as a product of 
independent probabilities. 

Z’t
i(z1...z5)= Πj=1..5 Z’t

ij(zj) 
 = Πj=1..5 ∑y=1..3 Yt

i(y).Pi’(zj| y)  (7) 

Where Pi’(zj| y)= Pi(zj| y) with d’ij replacing dij. 

 

4.2 Simple diffusion approximation  

As a first approximation, we just let d’ij= dij. In 
order to test the result, we compared on 3×3 spaces 
(N=9) the results of the approximate and exact 
processes (the exact process is simulated through a 
Monte-Carlo (MC) method) over an horizon of 
T=300. What we compared was, for different 
values of α, β, γ and dij, the maximal difference of 
probability of a cell being burnt as computed by the 
exact and approximate processes. The result was 
not very good: the maximal difference in 
probability was around 0.3, which led us to look for 
another definition of  d’ij=g(dij). The result on the 
example of Figure 1 is given on Figure 3 (second 
grid). 

Monte-Carlo (MC) method) over an horizon of 
T=300. What we compared was, for different 
values of α, β, γ and dij, the maximal difference of 
probability of a cell being burnt as computed by the 
exact and approximate processes. The result was 
not very good: the maximal difference in 
probability was around 0.3, which led us to look for 
another definition of  d’ij=g(dij). The result on the 
example of Figure 1 is given on Figure 3 (second 
grid). 

  

 

 
Figure 3. Probabilities of cells being burnt (after 
150 time steps). From left to right, top to down : 
Exact probabilities (Monte-Carlo simulation), 
approximate probabilities (no correction for dij), 
simple approximation and burning speed 
adjustment. 

 

4.3 Correction of the diffusion parameter  

The first correction we proposed was to take 
d’ij=g(dij) such that ||Z’t

i(z1...z5)- Zt
i(z1...z5)|| is 

minimal for a β, γ combination for which the 
simple approximation gave the worst results 
(β=0.1, γ=0.1). This gave for example, 
g(0.1)=0.091 ; g(0.2)=0.164 ; g(0.3)=0.234. 

Unfortunately, this method did not greatly 
improved the result on the 144 cells grid (Figure 3, 
third grid). This is why we proposed another 
method of correction, based on burning speed 
adjustment. In this method, we plot the ES(t) and 
ES’(t), expectations of the surface burnt on a on 
3×3 space  for the forest parameters (for which the 
simple approximation gave the worst results), in the 
exact and approximate case (ES(t)∈[0,9] and 
ES’(t)∈[0,9]). In both cases, the curves are linear 
for the early steps. Thus, g is built such that the two 
initial burning speeds correspond. This gives, on 
the example, g(0.1)=0.055 ; g(0.2)=0.084 ; 
g(0.3)=0.126. On the 144 cells example, the result 
is quite good, as shown in Figure 3, fourth grid. 

 

4.4 Large neighbourhoods diffusion 
approximation  

Up to now, we assumed that the neighbourhoods 
considered in the diffusion process were small 
enough in order to express and compute the value 
of Zt

i(z1...z5) for all possible combinations of z1...z5. 
However, this may not be possible for larger 
neighbourhoods, even for ones with only 9 or 16 
elements! 

For these larger neighbourhoods it would be more 
convenient to compute Z’t

ij directly from Yt
i by 

simulation, without computing the intermediate 
value Zt

i. In order to do this, we can follow the 
following procedure : 
For each i=1..N do 
  For k=1..K  % K is a huge constant;  
 Draw yti from Yti; 
 Draw every zj from yti and Pi(zj| yti); 
 Update Z’tij; 
  End; 
End. 

In this way, there are no more limitations on the 
size of the neighborhoods we can handle for 
approximating the diffusion process. Considering 
the time and space complexities of the 
approximation, We have : 

• Time complexity of computing every Z’t
ij : 

O(N.K.I) (where I is the size of the biggest 
neighborhood)  

• Space complexity : O(N.I). 

Once again, the approximation Z’t
ij obtained 

through simulation can be improved by comparing 



the resulting approximate process with a Monte 
Carlo simulation of the exact model. 

 

5. DECISIONS 

Up to now we limited our study to the 
approximation of Markov chains evolution. 
However, our aim is to use this approximation 
scheme for solving decision problems.  

It is clear that once a policy (i.e. a mapping from 
global states to actions) is fixed, a Markov chain 
results which we can study in order to evaluate the 
policy. To be more precise, we will restrict 
ourselves to finite-horizon problems with horizon 
H, and additive terminal-state reward functions : 

R(xt
1,...,xt

N)=∑i=1..N Ri(xt
i) if t=H and 0 else (8) 

Then, with this definition,  

Vπ(X0)=E[R(xH
1,...,xH

N)|π] =∑i=1..N tXH
i.Ri  (9) 

which is easy to compute. 

 

The trouble is that although we have managed to 
overcome (to the price of drastic simplifications) 
the problem of state space dimensionality, we have 
not yet solved the one of action space 
dimensionality : to every cell of the state space 
representation may correspond several actions, 
which means that the number of global actions 
available at each time step is exponential in the 
number of cells N. This is not to say about the 
policy space, i.e. the number of states to actions 
mapping, of size |S||A|, doubly exponential in N (in 
our simplified case!). Clearly, it is unrealistic to 
perform policy optimization in the whole policy 
space, and in what follows we will restrict our 
study to two limited subsets of available policies, 
which we illustrate on the fire example : static 
decisions and dynamic unconditional decisions. 

  

5.1 Static decisions  
In this case, in order to limit the size of the policy 
space to explore, we limit ourselves to studying the 
set of static policies, that is action choices which 
depend neither on the current state of the world, nor 
on the time step. In the fire example, this would 
correspond to the problem of choosing the 
implantation of fire towers : this is done once and 
for all and the choice is not modified depending on 
the current status (burning, burnt...) of the different 
cells. 

With this assumption, the policy space is equal to 
the action space, of size |A||N| (for each cell i, we 
have to choose among |A| alternatives). 

Furthermore, the static decision problem is more 
often posed in the following terms : you have k fire 
towers to locate among N cells, which generates an 
action space of size N!/(k!(N-k)!). This still makes 
a lot of policies to evaluate. However, we are now 
in front of a classical combinatorial optimization 
problem : to each possible configuration  of fire 
towers is associated a value, the expected surface 
burnt at time step H (more generally, 
E[R(xH

1,...,xH
N)|π]), and we want to maximize or 

minimize this value. Just any discrete optimization 
algorithm (such as genetic algorithms) can be used 
in theory.  

Practically still, due to the big amount of time 
needed to perform a single policy evaluation, 
discrete optimization algorithms may not be 
efficient by themselves, and further means of 
limiting the action space are needed. These means 
of decreasing the search space are certainly 
problem dependent, and for the fire problem for 
example, one such way would be to divide the N 
cells into k equal sets within which a single fire 
tower is to be placed. Then a possible way of 
finding an optimal location is to successively 
optimize the location of each fire tower in its subset 
in turns, the other towers location being fixed. 
Once the k towers locations have been optimized, 
we come back to the first one, and so on, until a 
locally optimal configuration is found. This  may 
need a number of evaluations in the order of 
several Ns, which seems to be acceptable. 

 

5.2 Dynamic unconditional decisions  

Another decision problem that could be solved in 
the spatialized framework is that of finding 
dynamic but “unconditional” policies, i.e. 
independent of the current fire status of the cells, in 
our fire example. 

For this simplified version of the global MDP 
resolution problem, the point is to find a sequence 
of actions π=(a1,...,aH) (i.e. a policy dependent on 
the time step, but independent of the state of the 
system), which allows to optimize the value 
function Vπ(X0). 

In the fire example, the problem could be to find a 
sequence of moves for a fire squad  initially placed 
in cell i (moves are between adjacent cells), which 
helps to minimize the expected surface burnt in the 
long run (or at a finite horizon H). We can suppose 
that the presence of the fire squad in a cell 
improves the probability of extinction of cells in a 
given neighborhood. In this case, we can define an 
approximation Xt+1 = fa(Xt) for the 
multidimensional Markov chain which is similar to 
that of Section 4, except that the transition function 
fa now depends on the current action a  (i.e. 



position of the fire squad after its move). Then, we 
can represent the problem of finding an 
unconditional sequence of actions minimizing the 
expected surface burnt at time horizon H as a tree-
search problem : 

We have proposed ways of handling decisions and 
decision optimization in this approximate 
framework, however, we have not tested the 
various decision optimization techniques of Section 
5 yet.  

X0 One weak point of the method is its lack of 
accuracy in the diffusion model, however we 
proposed an improvement through parameters 
adjustments which gave good results. More 
generally, the parameters can be empirically fine-
tuned on small sub-parts of the global process 
which is modeled. 

 

X1-1 X1-2 X1-3 X1-4 

 

... ... ... ... 

The good point, on the other hand, is the ability of 
the method to tackle very large problems: in the 
paper we dealt with a 144 cells problem in order to 
evaluate the results through a Monte Carlo method, 
but we although dealt with problems of 4900 cells 
(70×70), which took about eight hours of CPU time 
to be solved (convergence of the chain was 
obtained after 130 steps). Furthermore, the space 
complexity of the approximate method is linear in 
the number of cell, where an exact method is 
exponential!  

Figure 4. Tree-search problem 

The branching factor of the tree is the number of 
available actions. Branches are labeled by actions 
and nodes are the belief states Xt-i resulting from 
the application of decision i at time step t-1. To 
each node Xt-i can be associated a value v(Xt-i)= 

∑k=1..N Xt-i
k(2).sk where sk is the surface of cell k. 

In other terms, v(Xt-i) is the expected surface burnt. 

Equivalently, this node-valued tree representation 
can be replaced with a branch-valued tree 
representation : let k(X(t-1)-j,Xt-i)= v(Xt-i)- v(X(t-1)-j). 
k(X(t-1)-j,Xt-i) is simply the expected area that 
becomes burnt between t-1 and t, applying i. 
Clearly, k≥0 since burnt cells remain burnt 
whatever happens. So, we are left with the problem 
of finding a minimum cost path in a tree, where the 
cost of a path is the sum of local costs which are all 
positive or zero. Classical search methods, such as 
the A* algorithm can be used.  

Next, we will extend the method to spatially 
explicit population dynamics models, which will 
not bring new theoretical difficulties. Our practical 
objective is to assess the impact of land use change 
(deforestation, reforestation) on the dynamics of 
birds populations in the south of France (regional 
project). The main difference with our current fire 
toy example is in the increased size of the 
neighborhoods in the diffusion process : it requires 
the use of simulation in the approximation scheme. 

 
 

5.3 General case  
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6. CONCLUDING REMARKS 

We proposed an approximation method for highly 
dimensional Markov chains representing growth-
diffusion processes. The method was illustrated on 
a fire propagation example, but can be applied to 
many other spatial environmental examples: weeds 
propagation, animal population dynamics, soil 
erosion... 
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