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Abstract: We present a variant of the Multi-canonical Monte Carlo method in which the proposed 
configuration for the Metropolis test is generated by performing few steps of Molecular Dynamics. The 
proposed strategy makes possible to deal with numerical simulation of fully flexible chains of bonded 
monomers and in perspective to model the presence of the solvent at the fundamental atomic level. By 
realizing a sort of (unbiased) random walk in energy, the algorithm allows the system to overcome high 
energy barriers, thus enabling a good exploration of phase space even in presence of a strongly corrugated 
configuration profile. All the complications of the phase space structure of the system are taken into account 
by the successive re-weighting procedure. The numerical approach we present here is an important 
preliminary step in the direction of simulating protein folding in realistic conditions.  
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1. INTRODUCTION 

Rather accurate descriptions of systems of 
biological interest can be constructed today by 
developing more or less sophisticated micro-
scopic models that, however, in most cases, can 
only be dealt with numerically. For biological 
systems it appears of the utmost importance both 
in applications and from a more theoretical point 
of view to explore their dynamic and thermo-
dynamic behavior in different physico-chemical 
conditions. This was successfully done in many 
cases by exploiting some of the most modern 
numerical techniques, like those that are based on 
Molecular Dynamics (MD) (Allen and Tildesley, 
1990) and Monte Carlo (MC) (Rothe, 1992) 
methods, or by making use of more speculative 
approaches inspired by stochastic equations of the 
Langevin type (Parisi and Wu, 1981).  

Biological objects of special importance are the 
proteins. Proteins are linear polymers having the 
20 naturally occurring amino-acids (a.a.’s) as 
monomers. Chains smaller than a few tens of 
a.a.’s are called peptides. The biological 
functionality of a protein crucially depends on its 
correct folding. Mis-folding is, in fact, known to 
lead to malfunctioning and in many cases to 
severe pathologies (e.g., Creutzfeldt-Jacobs 
disease (Prusiner, 1997) human variant of BSE, 

Alzheimer disease (Selkoe, 2001), cystic fibrosis 
(Massiah et al., 1999).  

The challenge computational biology is facing 
today is to predict the folded configuration of a 
protein or a peptide solely from the knowledge of 
their a.a. linear composition.  

For a number of years the emphasis of numerical 
investigations was on developing algorithms of 
the simulated annealing type aimed at finding the 
global minimum of the potential (or free) energy 
of the system (see, for instance, Morante and 
Parisi, 1991). The major difficulty encountered by 
these approaches is in the existence of a large 
(actually exponentially large) number of local 
conformational minima, in which numerical 
searching algorithms get easily stuck “forever”. 
Similar problems emerge when the configuration 
space is explored by MD (micro-canonical 
ensemble) or by standard MC (canonical 
ensemble) simulations, with a consequent 
inadequate exploration of the system 
configuration space.  

To deal with these difficulties two strategies have 
been developed. The first one is very crude and 
consists in drastically reducing the number of 
degrees of freedom (d.o.f.) of the system, while 
keeping what are believed to be its essential 
features. This approach was followed with 



2.1. The canonical Monte Carlo method success in Iori et al., 1991, where it was shown 
that folding is a generic property of a sufficiently 
random hetero-polymer.  The canonical MC method is a strategy developed 

in Statistical Mechanics to compute the partition 
function of a system at the temperature 

βB/kT 1=  (i.e. endowed with Boltzmann 
probability distribution) and thermal averages of 
the type  

The second approach relies on the use of the 
Multi-canonical (MUCA) algorithm (Berg, 2000; 
Mitsutake et al., 2001) and variants thereof 
(simulated tempering, replica-exchange, etc.). The 
method realizes a sort of (unbiased) random walk 
in energy space, thus allowing the system to 
overcome in principle any energy barrier. All the 
complications of the phase space structure are 
taken into account by the successive re-weighting 
step. The effectiveness of the method for protein 
folding has been extensively studied in recent 
years (Mitsutake et al., 2001) and shown to be 
fairly good at least for not too long peptides (few 
tens of a.a. residues). Another appealing feature 
of the MUCA approach is that from a single 
(adequately long) run one can recover the whole 
thermodynamics of the system as a function of the 
temperature, while within the standard MC 
scheme one would need a new simulation for each 
required value of the temperature. 
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where N is the number of elementary constituents 
of the system. Note that, if A only depends on the 
coordinates, {q}, the dependence on momenta 
completely drops out from eq.(1). 

The key ingredient of the MC method is the 
Metropolis acceptance test by means of which a 
Markov sequence of system configurations, 

, is collected with probability 
distribution

 (2) 
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The idea of employing the MUCA strategy to 
protein folding is due to Hansmann and Okamoto, 
1993; Hao and Sheraga, 1994. Since then a lot of 
work has been done. In particular it has been 
possible to reproduce the correct folded structure 
of Poly-alanine10 into its α-helix coil (Hansmann 
and Okamoto, 1999) and of Met-enkephalin5 in its 
peculiar temperature dependent conformations 
(Mitsutake et al., 2001; Sugita and Okamoto, 
1999). We wish to note that for short peptides, 
like Poly-alanine, simulated annealing is still a 
competitive alternative (Morante and Parisi, 
1991). 

where K  and U are the kinetic and potential 
energy respectively, and 
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is the density of states with S(E) the entropy of 
the system. The Metropolis test is easily realized 
in the following way. Given the configuration C, 
a new configuration, C’, is generated by some 
(reversible) prescription and accepted with 
probability

 (4) ),1( min]'[ ])[]'[( CHCH
MC eCCP −−=→ β

A limitation of the existing MUCA algorithms is 
that covalent bonds and angles are kept fixed 
during the updating to bring the number of d.o.f. 
of the system to a “workable” size. This 
approximation prevents to model the solvent at 
the fundamental atomic level. The obvious step to 
cope with this problem is to introduce full 
flexibility along the chain. The method we 
describe in this paper goes in this direction and 
the preliminary results that we obtain are rather  
encouraging. 

Since this procedure fulfils the detailed balance 
principle, one can prove that the resulting 
effective probability distribution will be exactly 
that of eq.(2). We recall that, if the quantity of 
which we want to evaluate the thermal average 
does mot depend on momenta, one can use in 
eq.(4) the potential energy instead of the full 
Hamiltonian to generate the required Markov 
sequence. 2. THE MULTI-CANONICAL HYBRID 

MONTE CARLO ALGORITHM 
Given the set of collected configurations {Cj , 
j=1,...,NMC} (with NMC very large), the 
expectation value of a physical quantity A can be 
computed according to the simple formula 

The novelty of the approach we present here lies 
in the fact that in order to deal with the 
computational problems posed by the full 
flexibility of the chain we use MD to generate the 
configurations that will undergo the Metropolis 
test (see below). Before explain our approach, we 
briefly recall what the MC method is about. 
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2.2. The Hybrid Monte Carlo method  5b. if the configuration, C’, is refused, the system 
is left in the configuration, C, the old coordinates 
are stored and a new cycle begins from step 2. The MC method is very efficient for systems with 

near-neighbor interactions and no (or a limited 
amount of) frustration. Under these conditions, 
that are for instance met in the very important 
case of lattice Quantum Chromo-Dynamics, a 
thorough (ergodic) exploration of the system 
configuration space is possible. 

2.3. The Multi-canonical algorithm 

The MUCA-MC method (Berg et al., 1991) was 
introduced to try to overcome the limitations of 
the canonical MC discussed in the Introduction. 
The general idea is to have the system moving 
freely in energy, thus avoiding remaining stuck in 
some local energy minimum. This can be done if 
one could generate configurations with flat 
distribution, i.e. replace the MC probability 
distribution (2), ensuing from the Metropolis test 
(4), with the MUCA probability distribution 

Unfortunately in more complicated (complex) 
systems, like many systems of biological interest, 
this is almost never the case. The models by 
which phenomena, like immunological 
recognition, protein folding or docking, are 
described in terms of their fundamental 
constituents (atoms) turn out to be extremely 
complicated, as they are driven by short (e.g. 
Lennard-Jones) and long (Coulomb) range 
potentials with a subtle mixture of attractive and 
repulsive pieces. As a result the system possesses 
a very corrugated energy landscape with an 
extremely large number of nested local minima, 
in which the MC algorithm gets (almost) 
inevitably trapped, thus preventing the full 
exploration of the system configuration space.  

constant)( ∝℘ EMUCA    (6) 

In view of the previous equations, this can be 
achieved by replacing the Metroplois test (4) 
based on the Boltzmann factor exp(-βH), with a 
new Metropolis test based on the (inverse of the) 
density of states, eq.(3). In fact if, given C, we 
accept the new configuration C’ with probability 

),1( min]'[ /])[]'[( BkCSCS
MUCA eCCP −−=→  (7) 

Hybrid MC (HMC) method is an evolution of the  
straightforward MC in which the trial 
configurations to be subjected to the Metropolis 
test are constructed using MD. This modification 
which does not spoil the canonical nature of the 
algorithm (Rothe, 1992; Scalettar et al., 1986; 
Gottlieb et al, 1987), allows to perform collective 
moves, by which all d.o.f. are updated 
simultaneously. As a consequence, the algorithm 
can reach more distant configurations leading to a 
more efficient sampling of the system phase 
space. 

one can prove that the principle of detailed 
balance is obeyed, so the effective probability  
distribution will be (see eq.(3)) 

constant ][][ /][ =∝℘ − BkCS
MUCA eCnC  (8) 

The problem with this approach is that we do not 
know a priori the density of states of the system. 
Trying to guess it is hopeless, given the enormous 
complexity of the system. The only way is to 
perform a preliminary simulation from which an 
estimate, , of n[C], is extracted. In the 
literature various iterative strategies have been 
devised to carry out this step. An exhaustive 
description can be found in Berg, 2000. 

][ˆ Cn
In HMC the proposed new configuration, C’, is 
obtained from the old one, C, through the 
following steps: 

It is important to note at this point that it is not 
necessary to have an infinitely accurate 
preliminary determination of n[C] (which by the 
way if possible would render the whole procedure 
unnecessary). In fact, given a (reasonable) 
estimate, n , of n[C], one proceeds as follows. ][ˆ C

1. the initial coordinates for the MD iterations are 
those of the current configuration, C; 

2. the initial momenta are taken from a Maxwell 
distribution at a suitably chosen temperature; 

3. n  (~10) MD steps are performed; MD

1. By replacing (7), configurations are generated 
with probability 

4. the final configuration, C’, is submitted  to the 
Metropolis test. 

])'[ˆ/][ˆ,1( min]'[ˆ CnCnCCPMUCA =→    (9) The new configuration, C’, can be now accepted 
(step 5a) or refused (step 5b): 

2. The resulting effective configuration 
probability distribution will be 5a. if the configuration, C’, is accepted, the 

corresponding coordinates are stored and a new 
cycle begins from step 1. 

][ˆ
1][][ˆ
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CnCMUCA ∝℘    (10) 

which is only approximately constant. 



3. Statistical averages are evaluated using the well 
known re-weighting formula 
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2.4. Introducing full flexibility 

As already said in the Introduction, the existing 

away from the former. Such large displacements 
will almost inevitably bring some of the atoms of 
the chain to “collide” with some of the solvent 
atoms, thus leading to a configuration with a very 
high total energy which will never be accepted by 
the Metropolis test. The result is that the only 
acceptable moves will be those that happen to 
leave the whole configuration almost unchanged. 
Thus an adequate sampling of the configuration 
space will become prohibitively long.   

For this reason a simulation in which the solute-
solvent interaction is described at atomic level 
requires the introduction of full flexibility along 
Figure 1.  From top to bottom: 1) the tri-dimensional structure of the chain; 2) the history of the head-to-
tail length; 3) the history of the total potential energy. 
MUCA algorithms keep covalent bonds and 
angles fixed during the updating and only 
dihedral (torsional) angles are left free to move. 
The clear advantage of this strategy is a 
substantial reduction of the number of d.o.f. with 
a consequent rather efficient exploration of the 
configuration space.  

It must be immediately noted, however, that 
torsional moves are greatly disadvantageous in 
presence of the solvent. In fact, due to “leverage” 
effects, even a small modification of a rotational 
angle on one side of a long chain may results in a 
very large displacement of an atom located far 

the chain. The only alternative is to describe 
solvatation effects by introducing in the 
Hamiltonian an ad hoc contribution proportional 
to the solvent accessible surface area of the 
various atomic groups. This is what was done, for 
instance, in Mitsutake and Okamoto, 2000. 

We propose to solve the problems posed by the 
presence of the solvent by allowing full flexibility 
of the system, at the same time adopting the HMC 
strategy described above. Full flexibility means 
that the chain back-bone is not rigid. Rather 
covalent bonds and bond angles are driven by 
harmonic potentials. The total interaction 



potential, Utot, is then given by (Allen and 
Tildesley, 1990; La Penna et al., 1997) 

nbtorsbendstrettot UUUUU +++=

stret

bend

tors

 (11) 
where U  is the potential associated with bond 
length stretching, U  with bond angle 
bending, U with dihedral angle twisting, while 
the last term is the so-called “non-bonded” 
potential which includes Coulomb and Lennard-
Jones interaction potentials. 

3. NUMERICAL SIMULATIONS 

3.1. The model system 

In order to estimate the efficiency of the proposed 
strategy we performed MUCA test simulations on 
the C40=CH3(CH2)38CH3 alkane. We simulated the 
system as a polymeric chain of 40 beads (united-
atom approximation). Structural and dynamical 
properties of model systems of this kind have 
been extensively studied theoretically (Flory, 
1980) and are pretty well known. For this reason 
and because of the considerable length of the 
chain, we regard this system as rather interesting 
in view of testing the efficiency of our approach 
for the investigation of the significantly more 
complicated problem of protein folding. 

3.2. Results 

In Fig.1 we show a synthesis of some preliminary 
results we have obtained. In the lowest panel we 
plot the total potential energy (the interactions 
taken into account are those of eq.(11) with the 
exclusion of the non-bonded potentials) as 
function of the number of MUCA-MC moves. 
The figure clearly shows that the system oscillates 
among well separated energy states. This feature 
confirms the expectation that the algorithm is 
capable of exploring at large the configuration 
space of the system.  

The lowest energy of the system (~100 KJoule) 
corresponds to a configuration in which the chain 
is almost completely extended (the so called all-
trans configuration). This is also the starting 
configuration of our simulation. As seen in the 
figure, after few MC steps the chain rapidly 
evolves to higher energy configurations, then at a 
certain moment it goes back to a somewhat lower 
energy state around which it oscillates for a while, 
and then comes back to configurations of higher 
energies. 

In the middle panel we plot the history of the 
head-to-tail distance, h, of the chain. h is a kind of 
measure of the level of chain entangling (Flory, 
1980). The all-trans structure corresponds to an 
average length of about 5nm. The interesting 

observation is that, while the energy plot reflects 
something very much like to a two-states 
dynamics, the corresponding head-to-tail history 
has a smoother evolution, thus correctly 
reproducing the fact that many different “folded” 
structures correspond to very near energies (large 
entropy). It is also interesting that the extended 
(unfolded) structure is, on the contrary, almost 
unique as proved by the almost flat, constant 
value of h through the low energy region. In the 
top panel we draw the tri-dimensional structures 
assumed by the chain in correspondence of four 
representative values of the energy. On the very 
left we show the starting extended, all-trans 
structure. Moving to the right, the second 
structure corresponds to a configuration with a 
high energy and a relatively short head-to-tail 
distance, followed by a situation in which we 
have an extended structure with a large value of h 
and a relatively low energy. The shortest value of 
h we observed corresponds to the tri-dimensional 
structure drawn at the extreme right of the panel. 
Somewhat unexpectedly it happens to have a not 
too small energy.  

4. CONCLUSIONS 

In this note we have presented a promising variant 
of the existing MUCA-MC algorithms which 
appears to be particularly well suited for the study 
of long flexible chains of monomers. From our 
preliminary results we have fairly good 
indications that the modifications we have 
devised are apt to overcome the difficulties of 
more standard methods, when the latter are used 
for simulating systems with a large number of 
d.o.f. and long-range interactions. A more 
complete account of our investigation will be 
presented elsewhere (Berg et al., 2003). 

5. ACKNOWLEDGEMENTS 

We would like to thank the organizers of 
MODSIM  2003 for the opportunity offered to us 
to present this work. 

6. REFERENCES 

Allen, M.P. and D.J. Tildesley, Computer 
Simulation of Liquids, Clarendon Press, 
Oxford, 1990. 

Berg, B.A., Introduction to multicanonical Monte 
Carlo simulations, Fields Institue 
Communications, 26, 1-24, 2000 and 
references therein. 

Berg, B.A. and T. Neuhaus, Multicanonical 
algorithms for first order phase transitions, 
Physics Letters B, 267, 249-253, 1991. 



Berg B.A. and T. Neuhaus, Multicanonical 
ensemble: a new approach to simulate first 
order phase transitions, Physical Review 
Letters, 68, 9-12, 1992. 

Berg, B.A., La Penna, G., V. Minicozzi, S. 
Morante, G.C. Rossi, in preparation. 

Flory, P.J., Statistical Mechanics of chain 
molecules, Hanser Publishers, Oxford 
University Press, 1980. 

Gottlieb, S., W. Liu, D. Toussaint, R.L. Renken 
and R.L. Sugar, Chiral simmetry breaking 
in lattice QCD with two and four fermion 
flavors, Physical Review D (Particles, 
fields, gravitation and cosmology), 35, 
3972-3980, 1987. 

Hansmann, U.H. and Y. Okamoto, Prediction of 
peptide conformation by multicanonical 
algorithm: new approach to the multi-
minima problem, Journal of 
Computational Chemistry, 14, 1333-1338, 
1993. 

Hansmann, U.H. and Y. Okamoto, Finite-size 
scaling of helix-coil transitions in the poly-
alanine studied by multicanonical 
simulations, Journal of Chemical Physics, 
110, 1267-1276, 1999. 

Hao, M.-H. and H.A. Sheraga, Monte Carlo 
simulation of a first-order transition for 
protein folding, Journal of Physical 
Chemistry, 98, 4940-4948, 1994. 

Iori, G., E. Marinari and G. Parisi, Random self-
interacting chains: a mechanism for 
protein folding, Journal of Physics A: 
Mathematical and General, 24, 5349-
5362, 1991. 

La Penna, G., V. Minicozzi, S. Morante, G.C. 
Rossi and G. Salina, Molecular dynamics 
with massively parallel APE computers, 
Computer Physics Communications, 106, 
53-68, 1997. 

Massiah, M.A., Y.H. Ko, P.L. Pedersen, and A.S. 
Mildvan, Cystic fibrosis transmembrane 
conductance regulator: solution structures 
of peptides based on the Phe508 region, 
the most common site of disease-causing 
DeltaF508 mutation, Biochemistry, 38(23), 
7453-7461, 1999. 

Mitsutake, A., Y. Sugita and Y. Okamoto, 
Generalized ensemble algorithms for 
molecular simulations of biopolymers,  
Biopolymers (Peptide Science), 60, 96-
123, 2001. 

Mitsutake, A. and Y. Okamoto, Helix-coil 
transition of amino-acid homo-oligomers 
in aqueous solution studied by 
multicanonical simulations, Journal of 
chemical physics, 112, 10638-10647, 
2000.  

Morante, S. and V. Parisi, Building structural 
models of peptides : a semi-automatic 
software, Computer applications in the 
biosciences, 7, 21-26, 1991. 

Parisi, G. and Y.-S. Wu, Perturbation theory 
without gauge fixing, Scientia Sinica, 24, 
483-496, 1981. 

Prusiner, S.B., Prion diseases and the BSE crisis, 
Science, 278, 245-251, 1997. 

Rothe, H.J., Lattice Gauge Theories, World 
Scientific Lecture Notes in Physics - Vol. 
43, World Scientific, Singapore, 1992. 

Scalettar, R.T., D.J. Scalapino and R.L.Sugar, 
New algorithm for the numerical 
simulation of fermions, Physical Review B 
(Condensed matter and material physics), 
34, 7911-7917, 1986.  

Selkoe, D.J., Alzheimer’s disease: genes, 
proteins, and therapy, Physiological 
Reviews, 81, 741-766, 2001. 

 

 


	INTRODUCTION
	THE MULTI-CANONICAL HYBRID MONTE CARLO ALGORITHM
	The canonical Monte Carlo method
	The Hybrid Monte Carlo method
	The Multi-canonical algorithm
	Introducing full flexibility

	NUMERICAL SIMULATIONS
	The model system
	Results

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

