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EXTENDED ABSTRACT 

Climate variability, both natural and that 
introduced by anthropogenic activity, is of major 
concern to water resource planners within 
Australia. The current long lasting drought 
affecting Australia is causing scarcity of rainfall 
to such an extent that many regional potable water 
supplies are reaching critical lows. Given the 
importance of water, models which predict the 
influence of natural and anthropogenic factors on 
rainfall – the dominant hydrological driver - on a 
regional basis are urgently required for adequate 
assessment of water supply risk. 

Large spatial scale predictions of (typically 300 to 
500 km grids) global scale climate scenarios 
output by General Circulation Models (GCM) are 
inadequate for use in such studies as they do not 
capture the large degree of spatial variability over 
smaller distances which is inherent in rainfall. 
Multi-site daily rainfall – a common requirement 
within many hydrological models - is a required 
input for modelling complex multi-catchment 
systems, as small scale spatial variability due to 
factors such as topography has a large bearing on 
how much rainfall falls in a given area. Statistical 
downscaling is a technique which can produce 
such fine spatial scale rainfall pattern predictions 
conditional on the larger scale climate scenarios 
output by a GCM. 

This paper details the application of the 
GLIMCLIM (Generalised Linear Model for daily 
Climate time series) software package over a set 
of 30 selected sites spread over an area of 200,000 
km2 in south-eastern Australia. This model has 
been used in much smaller scale downscaling 
studies in the UK (Frost et al., 2006; Leith, 2005), 
but as yet has not found application to Australian 
rainfall. 

NCEP reanalysis data is used to provide 
predictors for model simulation. Statistics relating 
to the  ‘occurrence’ and ‘amounts’ models 
showed satisfactory performance given the 
simplicity of the models specified – with wet-
spell/dry-spell mean/standard deviation 

reproduced well (Figure 1), along with wet day 
mean/standard deviation. The correlation decay 
with distance between site rainfall occurrences 
were shown to be reproduced poorly (Figure 2), 
with further work on model specification 
required. Correlation between site amounts on the 
other hand was reproduced well.  

On the whole, given the degree of heterogeneity 
displayed across the area trialled, the model 
provides promising results as a method for 
providing multi-site daily rainfall simulation 
conditioned on large scale atmospheric outputs.  

 
Figure 1. Historical vs. simulated monthly site 

mean a) dry-spell duration and b) wet-spell 
duration (days). 

Figure 2. Correlation of occurrences (July) vs. 
distance between sites. Historical-circles/ 
triangles, Simulated-Bar (2.5%, 50% and 97.5%). 
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1. INTRODUCTION 

Multi-site downscaling of rainfall is a maturing 
field with many recently proposed statistical 
methods (eg. Fowler et al., 2005; Haylock et al., 
2006; Vrac and Naveau, 2007; Wetterhall et al., 
2006) with some also finding Australian 
application (Charles et al., 2004; Hope et al., 
2006; Mehrotra and Sharma, 2006; Timbal, 
2004). The methods of interest in this study are 
those which can be used to provide multiple 
simulations for hydrological risk estimation which 
explicitly account for the uncertainty and 
variability of precipitation given large scale 
conditioning variables.  
Downscaling methods can usually be classified as 
either relying on division into climate states 
and/or reliance on non-parametric distributional 
assumptions. Typically these models are 
calibrated and validated on a 6 month seasonal 
basis (using large scale test indices), with little 
monthly at-site validation presented. Admittedly 
validation on such a fine-scale is difficult given 
the length constraints in the literature, and the 
varying possible contexts in which the output can 
be used. However, it is unclear from the literature 
whether these models adequately reproduce the 
total monthly variations evident throughout the 
year and from site-to-site, as may be required for 
hydrologic models reliant on such input.  
The Generalised Linear Model (GLM) for daily 
Climate time series provides an alternative 
conceptualisation of the rainfall process and has 
been used to analyse and simulate spatial daily 
rainfall given natural climate variability 
influences in the UK (Chandler and Wheater, 
2002; Yang et al., 2005) and further to predict the 
influence of various future climate scenarios on 
regional rainfall by downscaling larger spatial 
scale GCM simulations (Frost et al., 2006). 
Rather than relying on division into ‘states’ the 
GLIMCLIM relies on a linear regression like 
structure (inherent to GLMs) for both rainfall 
occurrence and the amounts falling on wet days. 
This work details the application of this method 
of downscaling NCEP reanalysis data (Kalnay et 
al., 1996) under Australian conditions. 

2. MODEL DESCRIPTION 

A brief description of GLM methodology for 
daily rainfall is given here following that given 
within Chandler and Wheater (2002) and Yang et 
al. (2005). The methodology broadly follows a 
two stage approach to modelling daily rainfall 
relating to 1. occurrence and 2. amount associated 
with wet days. 

The pattern of wet and dry days at a site is 
modelled using logistic regression. Let ip  denote 

the probability of rain for the ith case in the data 
set, conditional on the covariate vector i′x ; then 
the model is given by 

( )( )ln 1i i ip p ′− = x β    (1) 
for some coefficient vector β . 
Gamma distributions are fitted to the amount of 
rain on wet days. The rainfall amount for the ith 
wet day in the database is taken, conditional on a 
covariate vector i′ξ , to have a gamma distribution 

with mean iμ  where 

iln μ i′= ξ γ     (2) 

for some coefficient vector γ .  

These two models are referred to as ‘occurrence’ 
and ‘amounts’ models respectively. The right 
hand sides of (1) and (2) are called ‘linear 
predictors’. Estimation of coefficient vectors γ  
and β , and selection of such predictors can be 
carried out using likelihood measures – see 
Chandler (2002) for details. 

Table 1. Daily rainfall sites used in study and 
proportion of record missing. 

Site  # Site Name Altitude (m) % Missing
049048 Balranald  58 0.6 
070014 Canberra Airport 578 0.0 
070028 Yass  595 0.3 
070054 Cooma  870 0.1 
072150 Wagga Wagga  212 0.0 
073007 Burrinjuck Dam 390 0.1 
074087 Urana  115 0.1 
075049 Maude  75 0.4 
072019 Holbrook  345 0.8 
072023 Hume Reservoir 184 0.1 
073051 Murringo  420 0.3 
074008 Grong Grong  159 2.8 
074025 Burrumbuttock  240 3.1 
075012 Wakool  84 0.0 
075054 Conargo 97 0.1 
075067 Carrathool  104 2.1 
076044 Nyah 80 1.2 
077001 Barraport North 111 0.1 
080044 Patho West 90 0.5 
080053 Tandarra 110 0.7 
081019 Goulburn Weir 122 1.1 
082002 Benalla  170 0.0 
082018 Gibbo R Park 550 0.9 
082127 Peechelba East 140 2.2 
083010 Eurobin 275 0.6 
083038 Tawonga 295 0.6 
088011 Campbelltown 366 0.1 
088042 Malmsbury Res. 450 0.0 
088060 Wallaby Ck 488 0.2 
088131 Narbethong 345 3.4 
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Figure 3. a) Daily rainfall site locations and b) NCEP reanalysis grid. The yellow rectangle corresponds to 
area over which predictors are used in this study following Charles (pers. comm., 2007b).  

Table 2. NCEP reanalysis predictors.  
Atmospheric Predictor Description NCEP reanalysis GRID (refer to Figure 3(b)) 
Summer.MSLP Mean sea level pressure (B2+B3+B4+C2+C3+C4)/6 
Summer.DTD700 Dew Point temperature depression at 700 hPa (C2+C3+C4+D2+D3+D4)/6 
Summer.E-W GPH500 East-West Geopotential Height Gradient at 500 hPa ((C3+C4+D3+D4)-(E3+E4+F3+F4))/4 
Winter.N-S MSLP North-South Mean seal-level Pressure gradient  ((A5+B5+C5+D5)-(A4+B4+C4+D4))/4 
Winter.DTD700 Dew Point temperature depression at 700 hPa (B2+B3+B4+C2+C3+C4+D2+D3+D4)/9 
Winter.DTD850 Dew Point temperature depression at 850 hPa (A5+A4+B3+B4+C3+C4)/6 
Winter.N-S GPH700 North-South Geopotential Height Gradient at 700 hPa ((A5+B5+C5)-(A4+B4+C4))/4 
2.1. Specification of predictors 
The choice of predictors within GLIMCLIM is 
required for both the ‘occurrence’ and ‘amounts’ 
models. Typically model specification might 
include the fitting of a smooth Legendre 
polynomial (LP) for site effects (to accommodate 
the non-homogeneity displayed across a region not 
explained by the input predictors), a sinusoidal 
seasonal component, an altitude component, and 
terms relating to previous days rainfall (to account 
for autocorrelation of the process). The fact that 
the effect of one predictor may depend on the 
values of others can be accommodated within the 
GLIMCLIM with the introduction of ‘interaction’ 
parameters between two specified components. 
Terms are accepted into the model following the 
procedure as specified within Chandler (2002). 
Exogenous atmospheric variables such as the 
NCEP reanalysis dataset can also be added as 
predictors to GLIMCLIM - see Leith (2005) and 
Frost et al. (2006) for examples. Once it is shown 
that the model sufficiently captures past variability 

using past site rainfall and the reanalysis data, 
GCM outputs on the same spatial scale can be used 
to provide future rainfall scenarios. 
3. METHODOLOGY AND DATA 
GLMs were fitted to a set of 30 Bureau of 
Meteorology daily rainfall stations spanning the 
period 01/01/1986-31/12/2005 – see list of sites in 
Table 1. These stations were the same as those 
used in a previous downscaling study by Charles 
(pers. comm., 2007b) in the SEACI project 
(www.mdbc.gov.au/subs/seaci) so as to facilitate 
future comparison. These stations had less than 
3.4% missing data over the 20 years, at any one 
station, and given previous investigation can be 
considered to be of reasonable quality. Site 
locations (mapped within Figure 3) show the large 
area over which downscaling is attempted in this 
study, with marked distances and changes in 
altitude between sites. This area is much greater 
than has been attempted previously using this 
model for daily rainfall. Daily NCEP atmospheric 
predictors were selected according to a correlation 
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analysis between atmospheric variables and site 
rainfall as undertaken by Charles (pers. comm., 
2007a). These predictors were calculated from the 
2.5˚ by 2.5˚ NCEP reanalysis grid area as plotted in 
Figure 3(b) according to the formulas presented in 
Table 2. It is noted that Charles used differing 
predictors for April-September (Winter) and 
October-March (Summer). Here, all of these 
identified predictors are used over the entire year. 
4. RESULTS 
GLIMCLIM was calibrated using a simple 
structure for both the occurrences and amounts – 
see Appendix A.  In summary there are LP site 
effects, an altitude term, an annual sinusoidal 
seasonal term, some at-site auto-correlative effects 
and all of the 7 atmospheric predictors previously 
mentioned. All predictors were found to be 
significant with the exception of Winter.N-S 
GPH700 for the occurrence model, and the 
Summer DTD700 and N-S MSLP for the amounts 
model. Notably, there were no interaction terms 
included apart from those relating solely to the site 
effects LP. This model thus serves as a basis on 
which to build a more meaningful model where 
there are interactions between these parameters – 
depending on the results of validation. 
Once the model was calibrated, it was then used in 
simulation mode to produce 100 replicates with the 
same length as the observed series. A set of 
annual, monthly, and validation statistics were 
calculated from each of the simulations and 
compared to the observed statistics for the full 
fitting period (1986-2005). 
4.1. Occurrence model 
Figure 4 plots the historical versus median 
simulated number of wet days (calculated for each 
site and month), and is reasonably well produced 
across most sites. The site and monthly pooling to 
a singular plot can mask specific sites and or 
seasons where the model may be performing 
poorly. Two individual sites plots of the mean 
number of wet days per month are presented in 
Figure 5 (including 2.5%, 25%, 50%, 75% and 
97.5% confidence limits). While the model 
performs well for Balranald, reproducing the 
seasonality, the seasonality is not reproduced well 
for Canberra airport. The majority of sites 
reproduced the seasonality well. However, 
approximately 10 of the 30 either showed some 
consistent bias, or reproduced the seasonality 
poorly. It is noted that sites at higher altitudes 
tended to produce the poorest results in terms of 
seasonality (e.g. Canberra Airport, Cooma, 
Narbethong, Wallaby Creek).  
Wet-spell/dry-spell mean (Figure 1) and standard 
deviation (not presented) are also reproduced 
satisfactorily. Monthly dry-spell skewness (Figure 

6a) was reproduced  reasonably with the majority 
of historical values falling within the 95% 
confidence limits (not shown). However, 
seasonality was not matched closely by the 
simulated values, resulting in the spread of 
historical versus median simulated in Figure 6. 
The wet-spell skewness (Figure 6b) historical 
values do not match the median simulated closely, 
with a large degree of variability in the simulated 
values (not shown). It is hypothesised that the high 
degree of variability of simulated skewness is 
produced due the quality of the seasonal fit for 
lower order statistics (mean, standard devation). It 
is predicted that the seasonality of skewness would 
be identified better with a closer fit for those 
statistics.
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Figure 4. Historical vs. simulated mean number of 
wet days per month. 

Figure 5. Monthly mean number of wet days for 
Balranald and Canberra Airport. Observed (Blue) 
vs. simulated (Black).  
The site-to-site correlation between occurrences 
was also calculated, and is plotted versus distance 
in Figure 2. July - A month representative of the 
winter dominated occurrences is shown and is 
similar to all other months (yet there is variability 
in slope of correlation decay from month to 
month). There are many observed values lying 
outside of the simulated confidence limits, with 
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general underestimation at distances below 200km, 
and overestimation from 350km upwards. It is 
noted that the model correctly forecasts dry and 
wet days 88.7% and 71.6% of the time 
respectively, which is quite high considering the 
effects of the poor reproduction of spatial 
correlation of occurrences.  

Figure 6. Historical vs. simulated skewness of a) 
dry-spell duration and b) wet-spell duration. 

While the general statistics relating to wet and dry 
day occurrences such as dry-spell/wet-spell mean 
and standard deviation are reasonable, there 
remains clear evidence that the GLIMCLIM does 
not account for the decrease in correlation of 
occurrences over distance. This effect could in turn 
cause the model to be producing poor wet-
spell/dry-spell characteristics. The model specified 
here is very simple, and it appears that spatially 
varying effects included here such as the altitude 
term and the LP are insufficient to induce greater 
spatial coherency between occurrences. 
Furthermore, the model has been specified such 
that the seasonality of occurrences is assumed to 
be constant throughout while this is not the case 
for some sites in the alpine regions. Also, the 
‘occurrence’ correlation between all sites and 
Wallaby Creek (088060) was markedly lower than 
all other sites (see triangles in Figure 2), and there 
is currently no mechanism to incorporate the 
probable effect of differing weather systems 
(coupled with topographic features) affecting 
different areas.  
It is noted that a further attempt at fitting a more 
complex model including interactions between 
parameters provided improved results in terms of 
seasonality and bias across all sites. However, 
whilst also improved to some degree, the problems 
in reproducing spatial occurrence remain. There is 
some evidence of poor data quality (rainfall 
recorded on the wrong days when compared to 
nearby stations) for some sites (eg. Narbethong). 
This issue requires further investigation to negate 

the possible biasing effect it may have on the 
model calibration. 
4.2. Amounts model 
The wet (rainfall > 0.95mm as used by Charles, 
pers. comm., 2007b) monthly mean/standard 
deviation are reproduced satisfactorily (Figure 7). 
However, there is some degree of spread – 
indicating a poor fit for some sites/months. 
Similarly to the wet-spell/dry-spell skewness, the 
monthly skewness/correlation of daily amounts is 
reproduced reasonably by the model (Figure 8), 
with most values falling between the 95% 
confidence limits (not shown). However, 
seasonality was not matched closely by the 
simulated values, resulting in the spread of 
historical versus median simulated. Spatial 
correlation between sites on wet days is 
reproduced well (Figure 9), which is expected 
given the use of historical correlation structure in 
the simulations. 
Overall the amounts model performs satisfactorily. 
There remain some sites where the seasonality is 
not reproduced well and/or there is constant bias 
with monthly mean/standard deviation. This result 
is again in part due to the simplicity of the model 
specified, with the consistent seasonality, and 
effects from other predictors (including NCEP 
atmospheric predictors) across all sites. 

 
Figure 7. Historical vs. Simulated wet a) mean 
and b) standard deviation.  

Figure 8. Historical vs. Simulated wet a) skewness 
and b) autocorrelation.  
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Figure 9. January correlation coefficient of 
amounts versus distance between sites.  

Figure10. Site annual mean (upper) and standard 
deviation (lower) statistics. Blue – Historical, 
Black – Simulated. 
4.3. Monthly and annual statistics 
Although not presented here in detail, as the 
primary concern here was the performance of the 
occurrence/amounts models, the annual mean 
(Figure 10) was reproduced satisfactorily for most 
sites, although was biased for sites/months where 
either the amounts and/or occurrence model were 
biased. The standard deviation was produced to a 
greater degree of satisfaction, with most sites 
falling between the simulation confidence limits. 
Furthermore, monthly time-series plots were 
produced for each site, to ensure that there were 
not any periods where the model markedly over- or 
underestimated rainfall. See Figure 11 for a single 
site example. Note the reproduction of the very dry 
drought period (post 1998 - especially January 
2004) which is a consistent feature across all sites. 
5. CONCLUSION 
This paper has presented a first attempt at applying 
GLIMCLIM to Australian rainfall conditions. 
NCEP reanalysis data are used as predictors within 
model simulation. Statistics relating to the 
‘occurrence’ and ‘amounts’ models showed 

satisfactory performance given the simplicity of 
the model specified. Correlations between 
occurrences was shown to be reproduced poorly, 
with further work on model specification required. 
Further investigation regarding the quality of data 
at some sites is also required. Overall the model 
shows some promise in providing simulations of 
multi-site daily rainfall for Australian conditions. 
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Figure11. Balranald monthly rainfall timeseries (mm): Observed (Black) vs. Simulated (Colours - 2.5%-
Yellow-25%-green-50%-aqual-75%-blue-97.5%). 
APPENDIX A 

Table A. ‘Occurrence’ and ‘amounts’ model specification. See Chandler (2002) for explanation of terms.  
OCCURRENCES AMOUNTS 

 Value C1 C2 
C
3 Description  #  Val C1 C2  C3 Description # 

0 -2.0541    Constant  0 -1.3979    Constant  
1 1.3255 1 31  LP1  for Eastings 1 1 -0.285 1 31  LP 1 for Eastings 1 
1 -1.4436 2 31  LP1 for Northings 2 1 0.595 2 31  LP 1 for Northings 2 
1 0.9422 1 32  LP 2 for Eastings 3 1 -0.8376 1 32  LP 2 for Eastings 3 
1 0.6698 2 32  LP 2 for Northings 4 1 0.1672 2 32  LP 2 for Northings 4 
1 0.011 1 33  LP 3 for Eastings 5 1 -0.6273 1 33  LP 3 for Eastings 5 
1 -0.5021 2 33  LP 3 for Northings 6 1 0.4327 2 33  LP 3 for Northings 6 
1 -1.4467 3   Altitude 7 1 1.1027 3   Altitude 7 

4 -0.2177 21   
Daily seasonal effect, cosine 
component 8 4 -0.1576 51 0  Summer.MSLP 8 

4 -0.2294 22   
Daily seasonal effect, sine 
component 9 4 -0.0975 52 0  Summer.DTD700 9 

4 0.7801 1 2 3 Ln(1+Y[t-1]) 10 4 -0.1724 53 0  Summer.E-W GPH500 10 
4 0.2746 3 5  I(Y[t-k]>0: k=1 to  3) 11 4 0.0329 54 0  Winter.N-S MSLP 11 
4 -0.9287 51 0  Summer.MSLP 12 4 -0.3462 55 0  Winter.DTD700 12 
4 -0.8734 52 0  Summer.DTD700 13 4 -0.1703 56 0  Winter.DTD850 13 
4 -0.2755 53 0  Summer.E-W GPH500 14 4 -0.0704 57 0  Winter.N-S GPH700 14 

4 0.327 54 0  Winter.N-S MSLP 15 4 0.2155 21   
Daily seasonal effect, cosine 
component 15 

4 -0.2413 55 0  Winter.DTD700 16 4 0.1439 22   
Daily seasonal effect, sine 
component 16 

4 -0.6868 56 0  Winter.DTD850 17 4 0.1959 1 2 3 Ln(1+Y[t-1]) 17 
4 0.0114 57 0  Winter.N-S GPH700 18 5 0.8398 1 2  Interactions  
5 -1.7257 1 2  Interactions  5 -0.7581 1 4  Interactions  
5 1.3904 1 4  Interactions  5 0.3763 1 6  Interactions  
5 -1.3219 1 6  Interactions  5 0.1337 3 2  Interactions  
5 -0.693 3 2  Interactions  5 -1.8987 3 4  Interactions  
5 1.5986 3 4  Interactions  5 0.0971 3 6  Interactions  
5 -0.7823 3 6  Interactions  5 0.762 5 2  Interactions  
5 -3.2077 5 2  Interactions  5 -0.767 5 4  Interactions  
5 0.437 5 4  Interactions  5 0.3696 5 6  Interactions  
5 -3.6283 5 6  Interactions  7 136 1 1 0 Easting bound 1 1 
7 136 1 1 0 Easting bound 1  7 702 1 2 0 Easting bound 2 1 
7 702 1 2 0 Easting bound 2  7 5840 2 1 0 Northing bound 1 2 
7 5840 2 1 0 Northing bound 1  7 6290 2 2 0 Northing bound 2 2 
7 6290 2 2 0 Northing bound 2  8 0.095 1 2  `Soft' threshold for +ve values 
8 0.095 1 2  `Soft' threshold for +ve values  9 0.7305    Dispersion parameter 

10 2.4889 21 1  
Parameter  1  in spatial 
dependence model  10 0 1   Observed residual correlation structure 
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