
Epidemic Modelling: Validation of Agent-based 
Simulation by Using Simple Mathematical Models 

Skvortsov1, A.T.  R.B.Connell2, P.D. Dawson1 and R.M. Gailis1 

1 HPP Division, 2 AO Division 
Defence Science and Technology Organisation, PO Box 4331, Melbourne, VIC, 3001 

Email: alex.skvortsov@dsto.defence.gov.au 

Keywords: epidemic modelling , agent-based simulation, SIR model, comparison

EXTENDED ABSTRACT 

Social contacts are an important channel for the 
propagation of disease through a population and 
should be considered in conjunction with 
traditional epidemic diffusion that is due to 
meteorological advection. Such channels should 
always be taken into account for a realistic 
estimation of a long-term impact of a disease 
outbreak (natural or malicious) and for the best 
response options (i.e. optimal immunisation 
strategy, see Chen et al 2004, Murray 2004, 
Bootsma et al.  2007).   

There are currently three main approaches to 
epidemiological modelling: equation-based 
(analytical models), agent-based (computer models 
where populations are presented as a system of 
interacting software agents) and closely related to 
this, network based modelling (when social 
interactions are modelled based on a network 
theory approach).  Agent based and network based 
approaches are complimentary to each other.   

The equation-based approach dates back to the 
celebrated SIR model (S-susceptible, I-Infected, R 
- Recovered) and its further modifications (see 
Kermack & McKendrick 1927 and Andersen & 
May 1979). This approach provides rigorous 
results and is the simplest to implement, but has an 
obvious shortcoming in that only simplified 
scenarios can be treated analytically. Agent-based 
simulation is the most flexible in terms of realistic 
scenario evaluation and has become increasingly 
popular (Germann et al 2006, Chen et al. 2004, 
Toroczkai et al .2007, Rahmandad et al 2004 and 
Dunham 2005). With the increasing availability of 
computer resources it allows high fidelity 
modelling of epidemical outbreaks on global, 
national and community levels. The main issue of 
the agent based approach is model validation, i.e. 
what is the fidelity of the model output for a given 
‘what if” scenario (which has never occurred) and 
what means do we have to validate these predictive 
results?    

One of the important steps of agent-based model 
validation is so-called “model alignment” (see 
Chen et al 2004), when the agent-based model 
output is reconciled with other modelling 
approaches for realistic (observable) values of 
model parameters.  

This paper describes our recent experience in 
developing a complex agent-based model to 
simulate an epidemic outbreak and comparing the 
results of the agent-based simulation with a SIR 
model as the first step in validating the agent based 
model. The guiding principle when designing this 
model was to create a research tool that would 
allow us to do various quantitative studies 
(sensitivity analysis, data assimilation, reverse 
problems) as well as ad-hoc operational scenarios 
based on a small-scale agent based model (that can 
run on a PC)  but with real census data. 

The model developed is CROWD. It is a civilian 
population model that takes census data and 
combines this with city planning information to 
build an urban population that has homes, families 
and places of work. CROWD leverages off the 
Advanced Urban Environment (AUE), a system 
that models urban buildings and infrastructure, to 
provide a model physical environment where 
people live.  It allows snapshots of the population 
dynamics to be taken during a standard day in the 
life of the city, imitating the circadian rhythms of 
work, rest and play (see GUI snapshots in Fig. 1). 
CROWD has a mobile population going about 
their daily routine and responding to changes in 
their environment. With CROWD it becomes 
possible to model the entire population in a 
plausible manner, providing a population that acts 
as if it inhabits the city and that reacts to events 
within their environs without requiring 
intervention from a puckster. Thus development of 
such an infrastructure is a critical step in realistic 
simulation of complex social network dynamics.  
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Figure 1: User Interface of AUE, showing 

population distribution. 

1. INTRODUCTION 

By using CROWD we managed to apply the AUE 
framework to a new modelling domain (i.e. disease 
spread in a closed community) resulting in a high 
fidelity, but cost-effective technical tool for “what-
if” analysis and simulation.  

Development of an infrastructure for realistic 
population dynamics is a critical step in high 
fidelity simulation of complex social network 
dynamics.  

The developed infrastructure can be applied to 
study many issues related to pollution dynamics 
(propaganda spread, impact of military forces on 
the civilian community which it occupies, cliques 
formation etc). Social contacts are also an 
important channel for the propagation of disease 
through a population.  Thus in the present paper, 
the simulation of social network dynamics 
facilitates development of a high fidelity model of 
disease spread amongst a small social community 
– township  (for a comprehensive review of the 
application of agent-based models in epidemiology 
see Chen  et al. 2004, Murray 2004). 

2. IMPLEMENTING THE 
EPIDEMIOLOGICAL MODEL 

The CROWD model is written in Java using Java 
1.5 SE. It runs on any OS capable of running Java 
(Linux, Mac, Windows) and is currently being run 
on an Intel Pentium D based processor with a 
minimum of 1GB of RAM and a minimum hard 
disk space of 1GB (mainly used by the data files).  

A virtual small Australian town, population just 
over 3000, was built from Australian Census 
Bureau data. The data used included age/sex 
breakdown and family-household-workplace 
makeup. The model generates a population based 
on the age/sex breakdown and then builds families, 
households and work places based on the census 
data. An initialisation file is used to determine the 
types of businesses within the town as well as the 
number of employees and hours worked. This is 
matched with the physical town data to match 
businesses and residences to brick and mortar 

buildings. The generated families are then 
randomly assigned amongst the residences and the 
population itself is randomly distributed amongst 
the businesses. This mapping provides the basic 
rhythm of travelling to work and home, with each 
agent travelling between home and work/school 
during a virtual day. Other effects such as the 
agents taking time to travel dependent on the 
distance involved and not working on weekends 
are also included. The contacts derived from these 
rhythms are used to drive the disease model. The 
disease model is modelled as a Finite State 
Machine with a probability of moving from one 
“epidemic” state to another as a result of the social 
contacts (S – susceptible to I - infected) and 
elapsed time (I to R-recoverd ). The structure of 
the social network generated by CROWD is 
presented in Fig. 2. 
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Figure 2: Plot of distribution of the number of 
contacts per 2 hr period per agent. 

The peaks to the right correspond to students in the 
three schools, which have populations of 190, 263 
and 286 respectively.  

To analyse the level of realism portrayed by this 
social network, it is useful to study the average 
social distance d and clustering coefficient C (see 
Newman 2003 for a discussion on how to calculate 
these). As discussed in Dekker 2007, in realistic 
social networks d is typically within 1.8 to 4 and C 
within .16 to .68 (for small networks). In 
CROWD’s social network, d=3.3 and C=.96. 
While the social distance is reasonable, the 
clustering coefficient is higher than expected. This 
higher reading originates from work and class 
room environments where every agent is deemed 
connected to the other. Such communities account 
for the vast majority of social contacts in the 
CROWD network, and as the networks there are 
uniform, C=1in these locations as all links are part 
of network triangles. The network shall be 
discussed more later. 

An artificial epidemic spread was created in this 
township within the CROWD model, where each 
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infected agent has a probability P1 = 7.1x10-4 of 
infecting uninfected agents it meets, and a 
probability P2 = 0.9959 of staying infected per two 
hour period (giving a half life of 14 days). This 
recovery model shall be generalised in future). The 
agents then spread the infection through a 
simulated town. The resulting graph of number of 
people in S, I, R states is given in Fig. 3. 
 
 

Figure 3: CROWD simulation epidemic data: a) 
results of 10 runs. Group 1, 2 and 3 lines represent 
the susceptible, infected and recovered populations 
respectively. Peak time differing due to 
amplification of effect of statistical variation when 
I is small, b) same data compensated for statistical 
variation in time to show shape is conserved. 

As can be seen from this graph, at first the disease 
spreads quickly through the susceptible 
population, however, as more people become 
infected, the availability of susceptible people 
drops, making it less likely for those infected to 
pass the disease on. Thus eventually, the epidemic 
dies out.  

Of particular interest is the variation in timing of 
the epidemics in each of the 10 runs. The epidemic 
modelled is a slowly spreading one. For a 
significant time, I stays small as there are few 
people to pass the disease, and each person 
recovering at this early stage has a large 
proportional effect on the size of I. It is not until 
I>>1 that the epidemic takes off quickly, with 
many people to spread it. At this stage statistical 
variation in infections and recoveries makes little 

difference and the course of the epidemic is 
constant for each run to within a few percent (see 
Fig. 3b). The time to peak I is 32 ± 6 days, with the 
peak percentage of population infected 55 ± 1%. 
The final number of uninfected people is 80 ± 10.  

CROWD is also capable of outputting data 
allowing the creation of a map of where infections 
occur within the virtual town, as in Fig. 4. Here the 
radii of the red circles is proportional to the 
number of people infected at a site. The three large 
infection zones are the three schools.  

 

 

Figure 4: Map of where infections occur. Larger 
circles correspond to more infections. Major 
infection sites correspond to the 3 schools. Light 
blue buildings are residential, pink buildings are 
businesses. 

3. VALIDATING RESULTS WITH A 
MATHEMATICAL MODEL 

The critical factor for a high fidelity 
epidemiological model is the ability to 
independently validate its predictive results. It is 
often very difficult (or even impossible) due to a 
lack of reliable field data (the simulated event has 
never occurred) or based on ethical grounds. The 
logical choice of validation techniques in such 
situations  is to use cross-validation, i.e. to run a 
validated model for some simplified scenarios 
(where the result is known or obvious) or to 
compare its output with other available models that 
have been validated (so called model alignment 
Chen et al. 2004).   
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One of the best candidates to use in independent 
validation is the so-called SIR model (Susceptible-
Infected-Recovered) – a simple mathematical 
model that analytically (and rather rigorously) 
describes epidemic spread within a uniformly 
connected population. It has a long history and has 
proved to be a plausible model for real epidemics 
(see  Bootsma et al.  2007).  

The basic SIR model can be represented by a non-
linear system of three equations (see Murray 
(2004)): 
 

 
These equations describe time evolution of a 
population moving between “epidemic” states S, I 
and R. The parameter α is the probability of a 
specific member of I infecting a specific member 
of S should they meet, multiplied by the chance 
they will meet per unit time. It can be represented 
by: 

PN
n

1=α  

for P1 defined as before and n and N are the 
number of contacts per agent per hour and N is the 
total number of agents.  

In contrast, the parameter β is the chance an 
infected person will recover per time unit. For the 
extreme scenario S = 0 (no susceptible people left) 
we would have a monotonic exponential decay of I 
= I0 e-βt.  

Based on realistic and general assumptions of the 
SIR model, we argue that any agent-based 
simulation should comply with it at least for some 
simplified scenarios (uniform social networks and 
constant infection rates and probabilities of 
recovery).  Thus while aligning CROWD with the 
SIR model cannot fully validate CROWD, for 
example when considering more complex 
scenarios beyond the scope of the SIR model, it is 
a useful first step and will be combined in future 
with comparison with real epidemiological data. 

In order to adequately compare CROWD results to 
the SIR model, β can be set to reflect the same half 
life time of 14 days used to generate the CROWD 
data in Fig. 3. 
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Then by using the following function derived from 
(1) and (2) (see Murray 2004): 
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and using the data depicted by Fig. 3 to assign the 
start (t = 0) and end (t ∞= ) values of S and I, we 
can find the ratio α/β. This provides a value 
α=2.46x10-6 per agent per hr.  

Evaluating the SIR model for these values of 
parameters α, β (done in Mathematica) leads to the 
plot in Fig. 5. As can be seen, the general 
behaviour of the two models is the same, with an 
epidemic lasting months, a sharp drop in S 
followed by a levelling out as I dies out, unable to 
sustain itself with the reduced S, and an increase in 
R as the sick recover. The same general conclusion 
holds for different values of parameters α, β, and 
this is a strong indication of CROWD fidelity. 
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Figure 5: SIR model epidemic state evolution, 
matching recovery time and initial and final S, I 
and R with the CROWD simulation.  

However the plots aren’t perfect matches, which is 
actually a good thing. The timing and magnitude 
of the Infected peaks are different. CROWD 
predicts I reaches a peak of 55% of the population 
on the 32nd day, whereas the SIR model predicts a 
peak of 39% on the 61st day. This is not 
unexpected. The SIR model is derived assuming 
uniform mixing among all members of the 
population, whereas a real population has people 
with a wide range of contact rates (Dekker 2007, 
Newman 2003). In such systems the part of the 
population with higher than average contact rates 
(ie the students in see Fig. 2) spread infection fast, 
more than compensating for those with lower than 
average rates. This causes the infected population 
to peak earlier and higher (see also Rahmandad et 
al 2004). 

To further illustrate this, we could have chosen to 
align the values α and β with CROWD using 
equations 4 and 5 and then using the CROWD S, I, 
R initial conditions to model the SIR model, giving 
Fig. 6. 

(5)

(4)
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Figure 6: SIR model epidemic state evolution, 
matching initial S, I and R, recovery time and 
chance to infect with the CROWD simulation. 

For an epidemic with matching properties (same β, 
P1 and n) we see that the SIR model predicts a 
much milder epidemic. Again, the difference is 
due to the more efficient passing of infection 
through CROWD’s more realistic social network 
than a uniform network assumed by the SIR 
model.  

However it is also true that the contact network of 
CROWD requires improvement. In particular the 
connection networks within schools and work 
places are currently uniform, rather than more 
realistic scale free networks, resulting in overly 
high contact rates and clustering coefficients, 
which in turn lead to overly efficient disease 
propagation. Changing this will result in (amongst 
other effects) bringing the student peaks in Fig. 2 
back towards the main population, but they should 
still be higher than the general populace.  

In general, we found that when trying to simulate 
more complex scenarios (spatially inhomogeneous 
populations, special events, etc.) the SIR-like 
models become rougher approximations and the 
agent-based approach becomes more appropriate 
(see also Toroczkai et al 2007). 

4. CONCLUSIONS 

We have presented a new agent-based model 
CROWD that is a high fidelity simulation tool for 
the modelling of disease spread in a realistic social 
network. By careful alignment of the output of 
CROWD and the SIR model we have obtained a 
sense of validity that is needed to develop a 
realistic disease spread model in a complex multi-
agent social context (including alignment of model 
parameters, scenarios and underlying 
assumptions). This validation in future will be 
expanded to comparison with real epidemic data.  

We believe that our new agent-based model for 
disease outbreaks provides a cost-effective ethical 
tool for reasoning about such events and for the 
simulation of the typical “what-if” scenarios, as 

well as for the evaluation of various response 
options.  Such a model can be used by civilian 
health officials for formulating health management 
policy, as well as by military commanders wishing 
to assess the impact of disease (naturally occurring 
or through deliberate biological warfare attack) on 
their operational capability.  
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