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EXTENDED ABSTRACT 

Simulation models of complex systems can be 
implemented as stand-alone applications dedicated 
to a particular domain with dedicated and 
optimised GUIs and supporting tools. 
Alternatively, the same effect can be achieved by 
building a generic simulation framework and then 
implementing the simulation model as a specific 
instance of that framework. Our framework, build 
primarily as a testing environment for robotic 
applications, consists of the repository store and 
the set of controllers: internal, rule module, 
tapestry, sensor, output. It follows the standard 
client server model where the clients store their 
private states and the server is a repository of 
shared states for simulation entities and the 
environment. From the simulation framework 
point of view, an environment is a collection of 
entities that are not the focus of a simulation 
experiment but necessary aid for conducting such 
an experiment. Rules are used to enact basic 
changes to the entities within the environment. An 
emergent behaviour can be observed by the 
execution of a collection of rules on the 
environment. The server is the placeholder and 
distributor of information supplied to entities 
through their sensor components. Sensors are used 
to provide entities with a transformed or 
incomplete perception of the environment, 
resulting in the entities exhibiting variant 
behaviour. To allow for flexibility in the way 
simulation experiments are designed selected 
components can be reused, extended or redesigned 
by application developers.  In order to overcome 

limitations of computing resources a distributed 
rule module protocol has been introduced as well. 
This paper will present three different types of 
applications to show the utility of the framework. 
For example, in the distributed Go*Team game 
(Figure 2) the players, instead of robots, played a 

game across the network.  In the asset protection 
scenario (Figure 1) simulated robots, as well as 
their control, were supervised by the framework 
itself. For the mind storm application (Figure 3) a 

physical as well as a simulated robot were 
controlled in an open loop by one application 
which was sending commands to a simulator as 
well as the robot itself. 

The rationale behind the design and development 
of such a framework are presented in this paper 
together with the distributed rule module protocol 
for parallel processing of mathematical models.
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Figure 4. Simulation Framework Conceptual Model 
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1. MOTIVATION 

In recent years there has been an explosion of 
research and 
development 
activities 
dedicated to the 
design and 
development of 
simulation 
frameworks, 
especially for 
real time robotic 
applications 
(Yeo et al. 2004, 
Xavier et al. 
2002, Yalcin et 
al. 2005).  When 
authors of this 
paper started 
looking for a 
simulator to test robotic middleware in 2000 the 
only suitable platform was UMBRA from Scandia 
(Gottlieb et al. 2001, Jagiello et al. 2006). 
Unfortunately, due to export restrictions it was 
impossible to acquire any technical information 
regarding the architecture and design not 
mentioning the software itself. It was decided in 
2001 to embark on research activities to design and 
develop a high performance simulator which 
allows the testing of robotic applications in 
“virtual reality” where the dynamics of the robots 
were simulated by a simulator but control of the 
robots was performed outside the simulator across 
the network by robotic applications running on 
stand alone PCs or robots themselves. It was 
necessary to have a development environment 
where applications can be developed and tested 
outside a hardware platform and later transferred 
without any modifications to a target system. The 
fundamental requirement for a simulator was the 
ability to construct ad hoc a variety of robotic 
applications while not being constrained by 
functionality or/and specific domain requirements. 
It was necessary to design a platform with an 
application programming interface which allows 
the design of simulation experiments in a similar 
manner to the way the IT development community 
have been using object oriented languages such as 
C++ or Java. Thus the solution was a simulation 
framework for the rapid design and 
implementation/deployment of various 
applications which have to be built according to 
the API framework to take advantage of already 
existing mechanisms which otherwise would have 
to be developed from scratch. 

2. FRAMEWORK MODEL 

The simulation framework can be represented as a 
non-linear discrete system as depicted in Figure 4.  

Usually some element of the experimentation 
scenario becomes the major focus, while other 
elements constitute only the stimulus for entities of 
interest to respond. This stimulus is usually 
modelled as an environment which plays a role of 
virtual reality for embodied agents like humans 
and robots, and a natural environment for synthetic 
agents like software agents. In order to sense the 
environment, a sensor mechanism is necessary to 
feed the entity or group of entities with 
information that represents the perceived state of 
the environment. Sensors provide a way of 
transforming the “complete and true” state of the 
system into a perceived state for the entity. Entities 
can be physical or artificial, distributed across the 
network or local, and they can be stationary or 
mobile. They may be internal or external to the 
framework. An external entity can dynamically 
register with the framework and become a part of 
the simulation experiment as in a typical client 
server paradigm. Entities can interact with each 
other and the environment in real time or simulated 
time. Therefore entities are conceptual holders of 
their own state and define the agent.  By agent we 
mean humans, computer programs, and robotic 
devices. To allow for definition of relationships 
between entities the rule module concept has to be 
introduced. The simulation framework represents a 
typical client server model where clients maintain 
their private state, and the server is a repository of 
shared states for all internal and external entities as 
well as the environment.  

The Repository Store represents the true state of 
the system and has been introduced to maintain 
and preserve a consistent state of all entities taking 
part in the simulation. It is responsible for holding 
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the compound state of the system independent 
from the private and perceived states of individual 
entities. In order to maintain this state it is 
necessary for the simulation framework to have 
dead time where access by entities to their sensory 
information will be blocked in order to preserve a 
consistent view of the environment.  In order to 
achieve this a simulation framework can be in one 
of two exclusive phases: the access phase where 
entities can enquire about the state of the 
environment and the deny phase where access is 
denied in order for a simulator to transition into a 
new state. Reflection is the simulation 
framework’s method of ensuring that the private 
repositories of agents are synchronised with the 
global state repository.  It guarantees that any 
agent accessing information from its own local 
repository will have an accurate state that is in 
sync with the simulation cycle. However, before 
the simulation framework can update the states, it 
must have a list of registered states that it should 
monitor. Private repositories can register states 
with the global state repository to receive 
synchronisation updates. Once registration is 
completed, the state repository identifies all 
changed states and propagates the changes to the 
private repositories at the end of every simulation 
cycle. Agent registrations are taken at the access 
phase while reflection happens as the last stage of 
the deny phase (see details below). The state 
vector )( kTkX Δ

r  is controlled by the non-linear state 
transition function f

rr = 
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The Rule Controller manipulates 
the =Δ )( kRMM TkX

r
)),(,)1(( KKkRMMRMM TkTkUTkXf ΔΔΔ−

rrr  
states and is responsible for modelling of non-
linear interactions between entities in order to 
modify or overwrite the entities’ own states. The 
rule modules represent the laws of the society that 
take precedence over the laws of individuals which 
may in some circumstances contradict each other.  
In order to reason about the appropriate laws and 
the order of their application an arbiter is necessary 
which in our case is called the rule module 
manager. 

The Tapestry Controller manipulates the 
=Δ )( kTM TkX

r
)),(,)1(( KKkTMTM TkTkUTkXf ΔΔΔ−

rrr  states 
and is responsible for creating, destroying, and 
manipulating both entities and rule modules.  

The Internal Controller manipulates the 
=Δ )( kR TkX

r )),(,)1(( KKkRR TkTkUTkXf ΔΔΔ−
rrr  states and 

allows for direct manipulation of entities from 
within the framework on the contrary to the 
external agents who can indirectly manipulate the 
state of entities.  

The Sensor Controller – converts the “true” state 
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)( Ki TkX ΔΩr state of the system available for an i 
entity  

The Output Controller – coverts the state 
)( kTkX Δ

r
into the output defined as 
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The Entity 1 to M (M = number of entities) – 
stores perceived state and generates the input 
vector )( ki TkU Δ

r  in order to propose change in the 
state of the simulator. These inputs can be 
postponed or accepted by the simulator. It is 
achieved by introducing two phased scheduling 
system. A simulator can be in the access or deny 
phase.  While in the access phase it will accept 
requests for change of state or access to data. 
Whilst in the deny phase requests are delayed until 
change of state is completed. During the deny 
phase all submitted requests for change of state are 
processed including internal, rule, tapestry, output 
and sensory controllers. This process can be 
represented as depicted in Figure 5. 
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 One simulation circle cTΔ  is the amount of time it 
takes to move simulator to a new state as follows 

CTΔ  = τ+Δ AT , ATΔ  - allocated time for 
submission of requests to change the state of a 
simulator represented by the U

r
 vector, τ - 

variable time that defines the necessary time to 
calculate and update the state of the simulator 
which is a function of dynamically calculated state 
transition functions ),,( RRMMTM fff

rrr
τ  plus time 

necessary to update private repositories of external 
entities. The simulation time step has no impact on 
τ under the condition that the numerical accuracy 
of simulation is excluded from our considerations. 
The τ = max ( SRS TT

Min
ΔΔ ,  ) where 

MinSTΔ - min 
allocated time to complete state change of the 
simulator, 

SRTΔ - actual time to complete state 
change of the simulator. As it is not difficult to 
predict that the processing of state transition 
functions is the most critical and computer 
intensive process during the deny stage of the 
simulation cycle. The complexities of some 
models are so overwhelming that sometimes it is 
not possible to process them in an acceptable time 
frame due to limitations of computing power. Due 
to the numerical characteristic of some models or 
numerical accuracy requirements some numerical 
algorithms may need to be changed on the “fly” 
between the simulation cycles. Another aspect is 
the complexity of model structure and order of 
processing models in order to guarantee data 
integrity. Processing order is often dynamic and 
driven by the nature of the simulated processes. 
Response time and the ability to simulate complex 
mathematical models is sometimes a critical factor. 
Parallel processing of some models can improve 
the overall performance of the simulation process 
under the condition that there is no 
interdependency between data generated by 
different models. Distribution of models between 
many computers can improve performance 
significantly under the assumption that network 
delays are negligible and the dependency of data 
can be mitigated. The HLA protocol has been 
proposed as a solution to interoperability issues 

between different 
models with no 
regard to 
optimisation of 

computer 
resources across 
the network and 

numerical 
accuracy 

requirements 
(Kuhl et al. 1999).  
Our proposal is an 
attempt to address 
this issue by 

introducing the Distributed Rule Module Protocol. 
Now we describe some ideas behind such a 
protocol. 

3. DISTRIBUTED RULE MODULE 
PROTOCOL 

Processing mathematical models locally is as 
simple as calling local solvers in the order defined 
by the rule module manager during the execution 
of a simulation cycle (see Figure 6). Sequential 
order of execution is reinforced by the blocking 
method call. Although models are executed 
sequentially one after another there is the 
possibility of changing the processing order by 

reordering or introducing a token that can “travel” 
between them. If we physically place models on 
separate computers then we need to inform the 
distributed frameworks when to start processing 
their models and in what order. A data structure 
representing a tree of relationships between rule 
modules will constitute the content of that token 
that will travel between computers and activate 
calculation of an appropriate model at every stage 
of a simulation cycle. Details of the protocol can 
be found in Jagiello et al. 2006. 

A distributed simulator is a network of fully 
functional simulators hosting their own processing 
components. Each individual simulator will 
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become a part of the whole distributed repository 
store. Only one simulator at the time will drive the 
simulation cycle across the network. The simulator 
responsible for driving a simulation cycle can be 
selected dynamically from the set of participating 
simulators. The simulator responsible for driving 
the simulation loop will generate a set of tokens 
that are sent to selected simulators across the 
network. These tokens represent independent 
branches of the tree or data sets that can be 
processed in parallel by distributed computers. The 
distributed computers will process their models 
according to a defined pattern, and a returning 
token will be sent back to resume the next 
simulation cycle. This pattern represents the tree 
structure of distributed rule modules and numerical 
requirements and process by which numerical 
results are acquired. New tokens will be generated 
dynamically when processing parameters have to 
be changed. The tokens will contain only the 
differences in the configuration of processing 
parameters. The order and hierarchy of models to 
be processed will be determined by a dynamically 
configurable table defined inside the token. A 
token or set of tokens has to be returned back to 
the rule module manager responsible for driving 
the simulation loop in order to complete the 
simulation cycle as depicted in Figure 7.  The 
framework infrastructure and its API was 
implemented in Java and published in Jagiello et 
al. 2006. 

 

4. APPLICATIONS 

The framework infrastructure has been mainly 
used as a prototyping tool for testing robotic 
applications. Although, recently it has been 
deployed for a distributed gaming application 
called Go*Team played across the network. This 

paper will present three different types of 
applications to show a utility of the framework. 
Namely, they are: 

1. The Asset Protection scenario 

2. The Mind Strom application 

3. The Go*Team game 

The Asset Protection scenario simulates the 
Mobile Detection Assessment Response 
System (MDARS). The MDARS is a robotic 
system for physical security and automated 
inventory of high-value or critical assets 
(Carroll et al. 2006). The scenario for the asset 
protection application is very simple. A group 
of defenders are protecting an asset by 
patrolling a confined area. Intruders appear 
randomly and attempt to destroy the asset. The 
defenders in order to destroy intruders have to 
inform each other about the encroachment and 
collaborate to surround and destroy the 
intruder. The defenders have a limited level of 
health and have to visit the “hospital” from 
time to time in order to repair damage inflicted 

by intruders. The defenders based on the current 
circumstances have to calculate their own goals 
and make a decision about when to engage in 
patrolling, pursuing, fighting or damage repair 
activities. The asset protection implementation 
model can be represented as depicted in Figure 8. 
The asset protection scenario is comprised of the 
following entities and their objectives (Figure 9). 

Defender, Intruder 
Asset, Hospital 

Defender 1 

Asset Protection Entities: Defenders, 
Intruders, Asset, Hospital 

. 

. 
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Defender n 
 

)(Pr TkeAction Δ
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Sensor  Manager : Hospital Detect, Asset 
Detect, Intruder Detect 

Rule Module Manager: 
Drive, Shoot, Heal

Tapestry Manipulator: Spawn 
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Hospital Position 
Asset Health 
Intruder Position 

Figure 8. Asset Protection Implementation Model 
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Hospital 

Assets - represent the critical infrastructure. Assets 
are stationary and are assigned a health value.  

When their health value reaches zero, the asset is 
destroyed. In the simulation, assets are represented 
as black domes. 

Hospital - were added to heal and replenish 
defenders. For a defender to be healed, they must 
be within range of the hospital. Hospitals are 
stationary and cannot be destroyed. Hospitals are 
represented in the simulator as a white cube with a 
red cross on the roof. 

Intruders - are entities whose sole objective is to 
destroy the asset. Intruders are mobile and can 
‘shoot’ (reduce the health of) any entity within 
their range. Intruders must move to the asset to 
destroy it. Intruders can destroy defenders, but 
their primary role is to destroy the asset. Intruders 
have a health, which when is zero, results in the 
intruders being destroyed. There are no limits to 
the number of intruders and intruder will appear 
randomly. Intruders are represented as black jeeps. 

Defenders - Defenders are responsible for 
protecting the asset. This means that the defenders 
will have two tasks to perform; to patrol around 
the asset to ensure that no intruders are present, 
and to repel and destroy any intruders that are 
attacking the asset. Including their personal goal of 
survival, the following is a list of goals and 
objectives for the defenders. 

PATROL – Patrol the asset to discover intruders. 

ATTACK – Close in and destroy any intruders.  

DEFEND – Return to the asset and protect it from 
attacking intruders. 

HEAL – When health is low, move to the hospital 
to be healed. 

Defenders are mobile, with a health and a range for 
its attack. When its health is zero, the defender is 
destroyed. There are only a fixed number of 
defenders in the simulation. Defenders follow 
different patrol paths to increase the coverage and 
protection of the asset. Defenders are represented 
as green jeeps in the simulator. 

In the Mind Storm application a physical robot and 
its model is controlled simultaneously by one 
robotic application. The rigid body model has been 
used to model a robot by the simulation framework 
in order to respond in real time to control 
command from the application (Baraff 1989). See 
picture of real and simulated robot (Figure 10).  

The Go*Team game was implemented as a 
multiplayer network computer game using our 
framework (Jagiello et al. 2007). Physically 
dispersed teams with individual players will play 
against each other. Teams can form alliances to 
simulate coalition forces. A game can be played by 
many teams on many boards with a limited 
number of allocated resources (stones). In order to 
introduce the “fog of war” each player can see 

Figure 10. Mind Storm Simulator 

Figure 11. The global Go*Team Situation 
Awareness (viewed via the server). 

Figure 9. Asset Protection Simulator 

Intruder Defender 

Asset 

Hospital 
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only the partial state of the game while only the 
game host can enjoy the full view of the game 
(Figure 11, 12, 13). 

 

5. CONCLUSIONS 

The developed infrastructure and its API’s seem to 
be very effective tools especially for prototyping 
purposes. Interfaces provided by the framework 
and supporting infrastructure allows for an 
effective way of developing a variety of simulation 
models from different domains. 
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Figure 12. The local view of one of the two 
black players, who can see only their own 
stones plus those stones of white that are closer 
to their own stones than those of any other 
player on the black team. 

Figure 13. The local view of one of the other 
black players 
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