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EXTENDED ABSTRACT

Most asymptotic distribution theory used in econo-
metric research relies on moment conditions which
carefully control outlier occurrences. It is not unusual
in time series analysis to see conditions of the type
let all required moments exist. However, in financial
and commodity market time series the extent of outlier
activity casts doubt on the suitability of such generic
moment conditions. Mandelbrot (1963) provided
suggestive evidence that even second moments may
not exist for this type of data, and he proposed stable
distributions with infinite variance as an alternative to
finite-variance statistical models. Subsequent research
has generally reached the conclusion that second
moments of most datasets appear to be finite.
In many empirical works in finance, the values of
kurtosis and skewness were statistically tested even
though the existence of higher-order, especially fourth
or sixth, moments has been studied less extensively.

This paper investigates a statistical testing method
for the existence of the k-th moment for dependent,
heterogeneous data using the tail index of the
distribution function.
Tail index estimation depends for its accuracy on a
precise choice of the sample fraction, i.e., the number
of extreme order statistics on which the estimation is
based.
Our test procedure has two steps. On the first step, we
estimate optimal sample fraction that minimizes the
mean squared error of Hill’s estimator. Then, we test
the hypothesis that the k-th moment is exist based on
the Hill’s estimator.
Results of Monte Carlo simulations show that optimal
sample fractions are chosen in average (except for
heavily dependent data), size of the test is a slightly
higher than a nominal rate and the test has good power
for light or moderately dependent data, but the power
decreases in heavily dependent case.

908



1 TAIL INDEX AND HILL’S ESTIMATOR

Suppose {Xt} is a sequence of possibly dependent
random variable having the same marginal distribu-
tion function F , where F̄ = 1−F is regularly varying
at ∞, namely there exists an α > 0, such that

F̄ (tx)

F̄ (x)
→ t−α as x → ∞ for all t > 0 (1)

or equivalently

F̄ (x) = x−αL(x) x > 0 (2)

for some slowly varying function L(x). α is called tail
index of F . Under this, it is easily seen that

F̄ (b(t)) ∼ t−1 as t → ∞

where
b(t) = F−1(1 − t−1).

Briefly speaking, we are assuming that the tail of F
could be approximated by a Parate distribution,

F̄ (x) ∼ Cx−α as x → ∞.

An estimator of the tail index could be used for a
moment existing test. Since if k < α, E(Xk) <
∞ and E(Xk) = ∞ for k ≥ α. It is important
to be able to accurately estimate the tail index. A
range of estimators has been proposed for this task.
An intuitive approach to estimation the tail index
was conceived by B. Hill (1975). Denoting z+ =
max{z, 0} and X(j) = X(n:j) for the j-th largest
value of X1, X2, . . . , Xn. Consider a sequence of
integers m such that m → ∞ and m/n → 0 as
n → ∞. The so called Hill’s estimator is defined by

α̂−1
m =

1

m

m
∑

i=1

(ln X(i) − ln X(m+1))

=
1

m

n
∑

t=1

(ln Xt − ln X(m+1))+.

The idea behind Hill’s estimator is easily understood.
By dominated convergence theorem and integration
by parts, the k-th moment of (ln X1 − ln b(n/m))+
is evaluated as (see also Hsing (1991), p1548)

E[(ln X1 − ln b(n/m))k
+]

=

∫ ∞

0

P [(ln X1 − ln b(n/m))k > u]du

=

∫ ∞

0

F̄ (exp(u1/k)b(n/m))du

= F̄ (b(n/m))

∫ ∞

0

F̄ (exp(u1/k)b(n/m))

F̄ (b(n/m))
du

∼ m

n

∫ ∞

0

exp(−αu1/k)du =
m

n

k!

α
.

For k = 1, in particular, E[(ln X1 −
ln b(n/m))+] =(m/n)α−1 and X(m+1) estimates
b(n/m). Hence the Hill’s estimator is essentially a
method of moments estimator of α−1.

Hsing (1991), in a seminal paper, proves consistency
and established a general distribution limit for α̂−1

m for
strong mixing processes. The basic idea is to apply
law of large numbers and central limit theorem to
(ln X1−ln b(n/m))+. Hill (2006) extends this results
to functionals of near-epoch-dependent on a mixing
processes.

2 CHOICE OF SAMPLE FRACTION

Tail index estimation depends for its accuracy on a
precise choice of the sample fraction, i.e., the number
of extreme order statistics on which the estimation is
based.

DuMouchel (1983) suggests that m ≤ 0.1 × n is a
good rule. But it does not work well for dependent
processes. Table 1 is a result of a small Monte Carlo
simulation. The sample size is 1000 and {Xt : t =
1, 2, . . . , 1000} is generated by AR(1) process

Xt = 0.9Xt−1 + εt,

where the εt are i.i.d. Student-t with 2 degree of
freedom. True values of α−1 are 0.5. m is chosen
to be 5%, 10%, 15%, 20%, 25% and 30% of the
sample size. This table is based on 1000 simulations.
The table reports means of Hill’s estimator (Hill’s est),
standard deviations (Std hill’s est), and mean squared
errors (m.s.e).

From the table, we see the estimator has negative bias
for small m (m = 50, 100) and positive bias for large
m (m = 200, 250, 300). The smallest bias and the
mean squared error are achieved at m = 150. The
positive biases for large m are understandable since
the order of the bias is O(m/n). Little is known about
the bias in small m under serially correlated data. It
might be an interesting research topic.

Bootstrap and adaptive selection methods for select-
ing m in the I.I.D. case are considered in Hall and
Welsh (1985), Hall (1990), Drees and Kaufmann
(1997), and Danielsson, de Haan, Peng, and de Vries
(2001).

Danielsson, de Haan, Peng, and de Vries (2001) sug-
gested the most sophisticated method for estimating
mean squared error of the Hill’s estimator. They
use a sub sampling bootstrap method for estimating
bias. Table 2 shows means, standard deviations and
mean squared errors of the Hill’s estimator for various
m. Random variables are drawn from I.I.D. Student-
t distribution with 2, 3 and 1 degrees of freedom
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Table 1. Hill’s estimate under AR(1) a=0.9

A=0.9 n=1000 t d.f. 2
m 50 100 150 200 250 300
Hill’s est 0.4039 0.4623 0.5180 0.5940 0.7094 0.8636
Std hill’s est 0.1684 0.1372 0.1199 0.1170 0.1402 0.2272
m.s.e 0.0376 0.0202 0.0147 0.0225 0.0635 0.1838

and Parate distribution with α = 3/2 and 5/2. The
smallest mean squared error is marked by asterisk.
The smallest mean squared error is achieved at m =
50 for the Student-t distribution with 2 and 3 degree of
freedom, and at m = 150 for the Student-t distribution
with 1 degree of freedom (Cauchy distribution). For
Parate distribution, optimal m which minimizes the
mean squared error is the largest m, since the Hill
estimator that uses all data is the maximum likelihood
estimator of the Parate distribution.

Table 3 is a result of Danielsson, de Haan, Peng, and
de Vries (2001) method. It reports means of selected
m, standard deviations of selected m, means of the
Hill’s estimator and standard deviations of the Hill’s
estimator. We could see that the Danielsson et al.’s
method choose appropriate m.

If we apply their method to dependent data, it choose
too small m. Table 4 reports means, standard
deviations and mean squared errors of the Hill’s
estimator for AR(1) data generating process with
Student-t errors. AR coefficients are chosen to be
0.6 and 0.9 (corresponding to a=0.6 and a=0.9 in the
table). Compared to the I.I.D. case, we could see that
the optimal m is increasing. Table 5 reports selected
m by Danielsson et al’s method and means of the
Hill’s estimator. Selected m’s are too small compared
to optimal m’s and it generates biases to the estimator.

3 A MEAN SQUARED ERROR ESTIMATOR
AND A TESTING PROCEDURE

Our test procedure has two steps. On the first step,
we estimate optimal m which minimizes the mean
squared error of the Hill’s estimator. Then, we test
the hypothesis that k-th moment is exist based on the
Hill’s estimator. It is equivalent to test

H0 : α−1 <
1

k

H1 : α−1 ≥ 1

k
.

For minimizing the mean squared error of the Hill’s
estimator, we need to estimate the variance and the
small sample bias of the Hill’s estimator.

If the data are I.I.D, Hall (1982) shows the variance
of the Hill’s estimator is α−2. In general dependent
data case, an analytical expression of the variance is
not available.

The Hill’s estimator is basically a moment estimator
of E[(log X1 − log b(n/m))+], however, we could
apply a block bootstrap method for estimating the
variance of the Hill’s estimator.

For evaluating small sample bias, we should worked
on more specific tail probability. Suppose the tail of
the distribution function F could be approximated as

F̄t(x) = cx−α(1 + x−α).

The following result is Corollary 2 in J. B. Hill (2007).

Assumption A {Xt} satisfies (1) for some α > 0.
For some positive measurable g : R+ → R+,

L(λx)/L(x) − 1 = O(g(x)) as x → ∞.

The function g has bounded increase: there exists 0 <
D, z0 < ∞ and τ < 0 such that g(λz)/g(z) ≤ Dλτ

some for λ ≥ 1 and z ≥ z0. Specifically, {mn}n≥1,
{bmn

}n≥1, and g(.) satisfy
√

mng(bmn
) → 0, where mn → ∞, mn = o(n).

Assumption B {Xt} is L2-E-NED with size 1/2 on
E-Mixing Process {εt}. The base {εt} is E-Uniform
Mixing with size r/(2(r − 1)) for some r ≥ 2, or E-
Strong Mixing with size r/(r − 2) for some r > 0.
Remark: See J. B. Hill (2007) for definitions of L2-E-
NED, E-Mixing and E-Uniform Mixing.

Lemma Suppose

F̄t(x) = cx−α(1 + x−α), α, c > 0,

and mn = o(n2/3). Under Assumptions A and B

Bmn
≡ E[

√
mn(α̂−1

mn

− α−1)]

=
√

mnα−1 × 1

2
× b(n/m)−α + o(1)

= o(1).
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Note: For small samples and any process satisfying
(2), this estimator of the bias is at best a rough
approximation of the true bias. Pareto random
variables, for example, this estimator over-estimates
the bias.

b(n/m) is easily estimated by X(m+1). Our estimator
of the bias is

B̂m =
√

mα̂−1
m × 1

2
× X−α̂m

(m+1)

and the estimator of the optimal m is

m̂ = min
m

{σ̂2
m + B̂m},

where σ̂2
m is a block bootstrap estimator of the

variance of α̂−1
m . Our test statistics is usual t-statistics

that uses the Hill’s estimator evaluated at m̂,

t =
α̂−1

m̂ − 1/k
√

σ̂2
m̂

.

Asymptotic normality of the test statistics has not
yet been proved. We only present a small Monte
Carlo simulation result at this time. The samples
are generated as follow. We draw random samples
of I.I.D. innovations {εt} from Student-t distribution
2,3 or 1 degree of freedom. It implies true α−1 =
0.5, 0.33 or 1.0 correspondingly. The number of
sample size is fixed to 1000. We simulate AR(1)
processes using {εt},

Xt = a × Xt−1 + εt, a ∈ {0.3, 0.6, 0.9}.

500 processes are generated for each cases. Our
testing hypothesis is that the variance is finite or not,

H0 : α−1 < 1/2

H1 : α−1 ≥ 1/2.

Results are summarized in Table 6. Table 6 reports
means of m̂, s.t.d of m̂, means of α̂−1

m̂ , s.t.d of α̂−1
m̂ and

rejection rates of H0 based on 5% one side nominal
critical value for each AR coefficient and degree of
freedom of t-distribution.

Compared to Table 4, we could see that appropriate
m’s are chosen in average. It implies the biases are
not so large at least a = 0.3 and 0.6.

Rejection rate of H0 on Student-t with 2 degree of
freedom shows size of the test. It shows a tendency
to over rejection (about 2-3%). The power of the test
is not so bad. The rejection rate of Student-t with 1
degree of freedom is almost one for a = 0.3 and 0.6.
But it decreases to 60% when a = 0.9. Probably,
this power loss is caused by relatively large bias at
a = 0.9.

4 CONCLUSION

This paper proposes a statistical testing method for
the existence of the k-th moment for dependent,
heterogeneous data using the tail index of the
distribution function.

Our test procedure has two steps. On the first step,
we estimate optimal m which minimizes the mean
squared error of the Hill’s estimator. Then, we test
the hypothesis that the k-th moment is exist based on
the Hill’s estimator.

The results of Monte Carlo simulations show that
optimal m’s are chosen in average (except for heavily
dependent data), the size of the test is a slightly higher
than a nominal rate and the test has good power for
light or moderately dependent data but the power
decreases in heavily dependent case.
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Table 2. Mean and M.S.E. of Hill’s Estimator (I.I.D.)

m 50 100 150 200 250 300 400

t dist d.f. 2 mean 0.5431 0.5883 0.6463 0.7216 0.8103 0.9340 1.3930
α−1 = 0.5 s.t.d 0.0757 0.0539 0.0479 0.0459 0.0493 0.0607 0.1267

m.s.e 0.0076∗ 0.0107 0.0237 0.0512 0.0987 0.1920 0.8136

t dist d.f. 3 mean 0.4081 0.4693 0.5377 0.6189 0.7188 0.8433 1.3092
α−1 = 1/3 s.t.d 0.0532 0.0419 0.0408 0.0408 0.0451 0.0543 0.1188

m.s.e 0.0084∗ 0.0202 0.0434 0.0832 0.1506 0.2630 0.9665

t dist d.f. 1 mean 1.0103 1.0252 1.0578 1.1025 1.1701 1.2676 1.6680
α−1 = 1 s.t.d 0.1475 0.0994 0.0824 0.0754 0.0694 0.0726 0.1182

m.s.e 0.0219 0.0105 0.0101∗ 0.0162 0.0337 0.0769 0.4601

m 50 100 200 400 500 750
Parate mean 0.6672 0.6678 0.6651 0.6657 0.6664 0.6658

α−1 = 0.66 s.t.d 0.0947 0.0662 0.0454 0.0320 0.0298 0.0241
m.s.e 0.0090 0.0044 0.0021 0.0010 0.0009 0.0006∗

Parate mean 0.3998 0.4002 0.3987 0.3994 0.4005 0.3999
α−1 = 0.40 s.t.d 0.0567 0.0384 0.0280 0.0203 0.0184 0.0147

m.s.e 0.0032 0.0015 0.0008 0.0004 0.0003 0.0002∗

Table 3. Danielson et al. (2001) Method

Student-t Parate

d.f. 2 d.f. 3 d.f. 1 α−1 = 0.66 α−1 = 0.4
m 54.6800 33.69 119.3720 864.6080 874.8760

s.t.d of m 43.1062 28.3625 92.72 183.7278 184.2408
mean of Hill’s est 0.5187 0.3673 1.0579 0.6623 0.3966
s.t.d of Hill’s est 0.1109 0.0870 0.8353 0.0406 0.0191

Table 4. Mean and M.S.E. of Hill’s Estimator (AR(1))

M 50 100 150 200 250 300 400

t d.f. 2 a=0.6 mean 0.4816 0.5285 0.5800 0.6569 0.7516 0.8764 1.3661
s.t.d 0.1006 0.0699 0.06 0.0602 0.06 0.0859 0.2388
m.s.e 0.0105 0.0057∗ 0.0105 0.0283 0.0675 0.1491 0.8071

a=0.9 mean 0.4039 0.4623 0.5180 0.5940 0.7094 0.8636 1.3237
s.t.d 0.1684 0.1372 0.1199 0.1170 0.1402 0.2272 0.6311
m.s.e 0.0376 0.0202 0.0147∗ 0.0225 0.0635 0.1838 1.0769

t d.f. 3 a=0.6 mean 0.3514 0.4104 0.4846 0.5609 0.6690 0.8034 1.2892
s.t.d 0.0597 0.0453 0.0467 0.0483 0.0602 0.0803 0.2346
m.s.e 0.0039∗ 0.0080 0.0250 0.0541 0.1163 0.2274 0.9686

a=0.9 mean 0.2838 0.3494 0.4263 0.5179 0.6370 0.7740 1.2714
s.t.d 0.0902 0.0745 0.0749 0.0865 0.1175 0.1740 0.6110
m.s.e 0.0106 0.0058∗ 0.0142 0.0415 0.1060 0.2245 1.2533

t d.f. 1 a=0.6 mean 0.9655 1.0030 1.0354 1.0894 1.1697 1.2765 1.7133
s.t.d 0.2581 0.1955 0.1688 0.1423 0.1271 0.1335 0.2658
m.s.e 0.0678 0.0382 0.0297 0.0282∗ 0.0449 0.0943 0.5794

a=0.9 mean 0.8051 0.9286 0.9890 1.0771 1.1810 1.2952 1.6095
s.t.d 0.3671 0.3413 0.2985 0.3092 0.2806 0.3171 0.7698
m.s.e 0.1728 0.1216 0.0892∗ 0.1015 0.1115 0.1877 0.9641
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Table 5. Danielsson et al.’s method (AR(1))

t d.f. 2 t d.f. 3 t d.f. 1

a=0.6 m 50.06 31.08 105.80
mean of Hill’s 0.44 0.31 1.00

a=0.9 m 46.79 30.71 78.37
mean of Hill’s 0.35 0.22 0.73

Table 6. Finiteness of variance test

AR coef a=0.3 a=0.6 a=0.9

t dist d.f. 2 mean of m̂ 68.30 93.80 115.90
s.t.d of m̂ 24.11 31.36 58.56

mean of α̂−1
m̂ 0.5162 0.5091 0.4579

s.t.d of α̂−1
m̂ 0.0699 0.0827 0.1625

rejection rate of H0 0.0820 0.0700 0.0620

t dist d.f. 3 mean of m̂ 59.50 79.20 87.20
s.t.d of m̂ 19.63 79.20 45.06

mean of α̂−1
m̂ 0.3913 0.3747 0.3197

s.t.d of α̂−1
m̂ 0.0519 0.3747 0.1077

rejection rate of H0 0.0000 0.0000 0.0080

t dist d.f. 1 mean of m̂ 84.90 110.20 136.80
s.t.d of m̂ 32.85 53.40 88.33

mean of α̂−1
m̂ 0.9767 0.9627 0.8755

s.t.d of α̂−1
m̂ 0.1590 0.1943 0.3386

rejection rate of H0 0.9900 0.9800 0.5960
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