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EXTENDED ABSTRACT 
 
This paper extends standard regression models 
for count data in two ways. The first involves 
allowing for excess numbers of counts (count 
inflation) simultaneously at several values other 
than the zero value. The second involves 
broadening the class of discrete distributions by 
considering the Hermite distribution (Kemp and 
Kemp, 1965). This distribution has not been used 
previously in the econometrics literature, and 
when it has been used elsewhere, no 
consideration has been given to introducing 
covariates into the model. Two particularly 
appealing features of the Hermite distribution are 
its abilities to model multi-modal count data 
without any modification, and to allow for over-
dispersion in the sample. We pursue these 
extensions of the standard count data models both 
separately and jointly, and provide several 
empirical applications that illustrate some of their 
merits. Our results to date suggest that the 
Hermite distribution, parameterized to 
incorporate covariates, offers considerable 
potential in the modeling of discrete economic 
data. 
 
1.  INTRODUCTION 
 
Count data take only non-negative integer values, 
and they arise in many fields. In economics, 
examples include the number of applicants for a 
job, or the number of labour strikes during a year. 
Such data cannot be modeled adequately by 
means of standard regression analysis. In 
addition, in practice at least two characteristics of 
count data require special attention: there may be 
an abnormally large number of observations at 
one or more integer values, so the distribution of 
the data may be multi-modal; and the data may be 
“over-dispersed”, in the sense that the variance 
exceeds the mean. These complications can be 
handled in various ways, but in this paper we 
revisit these important issues and discuss some 
new generalizations of the basic Poisson 
regression model for count data. In particular, we 
explore the use of a flexible discrete distribution, 
the Hermite distribution, which has not been used 
previously for modeling with covariates. Our 
empirical work with this distribution, some of 

which is summarized in this paper, suggests that 
it can provide a powerful way of modeling over-
dispersed and multi-model count data. 
 
2.  ZERO-INFLATED POISSON 
 REGRESSION 
 
The usual starting point for modeling count data 
is the Poisson distribution, whose p.m.f. is given 
as !/)exp(].[Pr yyY yλλ−==  ; y = 0, 1, 2, 
…….. where λ ( > 0) is both the mean and 
variance, so the distribution is described as “equi-
dispersed”. Many data are “over-dispersed” - 
their variance exceeds their mean - thus reducing 
the usefulness of the Poisson distribution. 
Modeling the variance  by a gamma distribution, 
leads to the familiar Negative Binomial (NegBin 
II) distribution, which can capture over-
dispersion. Covariates are introduced into the 
model by assigning )'exp( βλ x= , ensuring that λ 
> 0.  Maximum likelihood estimation is then 
straightforward, as the likelihood function is 
strictly concave (as it is for the NegBin II model). 
The Poisson model, and standard variants that 
allow for over-dispersion, cannot describe multi-
modal data. More correctly, if λ is integer, then 
the Poisson distribution has modes at λ and (λ – 
1), but never at non-adjacent values. If λ is non-
integer, the single mode occurs at [λ]. The zero-
inflated Poisson (ZIP) regression model is a 
modification of this familiar Poisson regression 
model that allows for an over-abundance of zero 
counts in the data, which is widely encountered in 
practice. (Mullahy, 1986; Lambert, 1992.) 
 
The data are assumed to come from two regimes. 
In RI the outcome is always a zero count, while in 
RII the counts follow a  Poisson process. Suppose 
that iIi Ry ω=∈ ].[Pr ; )1(].[Pr iIIi Ry ω−=∈ ; i 
= 1, 2, …, n. Then,  

)exp()1(]0.[Pr iiiiy λωω −−+==  ; 

!/)exp()1(].[Pr rry r
iiii λλω −−== ; r = 1, 2, 3, 

….., 
As before, covariates enter the model through the 
conditional mean, iλ , of the Poisson distribution: 

)'exp( βλ ii x= , where 'ix  is a )1( k×  vector of 
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the ith observation on the covariates, and β is  
)1( ×k . Clearly, iiii xyE λω )1(]|[ −=  and 

))(1(]|[ 2
iiiiii xyVar λωλω +−= , so this model 

also allows for over-dispersion of the data (if 
0>iω ). This over-dispersion does not arise from 

heterogeneity, as when the Poisson model is 
generalized to the Negative Binomial model. It 
arises from the splitting of the data into the two 
regimes. In practice, over-dispersion may come 
from one or both of these sources (Mullahy, 
1986; Greene, 2003, p.750). Following Lambert 
(1992), we can model iω  using a Logit 
specification, so )]'exp(1/[)]'[exp( γγω iii zz += , 
where zi is a )1( p×  vector of the ith observation 
on some covariates, and γ is a )1( ×p vector of 
additional parameters. The elements of zi may 
include elements of xi, and a Probit  specification 
may be substituted for the Logit specification. 
 
If we have n independent observations in our 
sample, it is readily seen that the log-likelihood 
function may be written as 
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The Negative Binomial regression model may be 
extended to allow for zero-inflation of the data in 
a corresponding way. 
 
3.   MULTINOMIALLY-INFLATED 
 POISSON REGRESSION 
 
Now, suppose that the data exhibit an excess of 
counts at several integer values (which may 
perhaps include the zero value). Another way of 
characterizing this situation is that the data have a 
multi-modal empirical distribution. This problem 
appears to have received relatively little attention 
in count data modeling. Santos Silva and Covas 
(2000) and Hellström (2006) have used modified 
double-hurdle models to deal with data exhibiting 
this characteristic. Melkersson and Rooth (1999) 
have also considered a simple extension of the 
ZIP model for the case where allowance must be 
made for count inflation at just the values zero 
and two.  
 
We propose a full generalization of the ZIP 
model that allows for count-inflation at a 
multiplicity of values. Not only does this allow us 
to deal with multi-modal data, but it also has 
implications for modeling over-dispersion, 

without moving (at least initially) from the 
Poisson basis for the model. Other 
generalizations then follow. Now the data may be 
partitioned into (J + 1) regimes, Rj (j = 0, 1, 2,…., 
J). The first J of these involve different degrees 
of count-inflation, and the last regime 
corresponds to the non-inflated counts. That is, RJ 
corresponds to RII in the section 2. Specifically, 
we replace the (binomial) Logit specification that 
is used to model the regime probabilities in the 
ZIP model by a multinomial Logit specification. 
We will call the associated  model the 
Multinomially-Inflated Poisson (MIP) model. It 
contains the ZIP model and the model of 
Melkersson and Rooth as special cases. The 
details are as follows. 
 
The usual multinomial Logit specification (e.g., 
Greene, 2003, p.721) is: 

∑+==
=

J

l
lijii zzjy

1
)]'exp(1[/)'exp(].[Pr γγ    ;   j = 

0, 1, 2, …., J   
where a normalization such as γJ = 0 is imposed 
to take account of the fact that the (J + 1) 
probabilities must sum to unity. So, let 
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J
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lijiijji zzRy

1
)]'exp(1[/)'exp(].[Pr γγω    

;     j = 0, 1, 2, …, J;  γJ = 0. 
Then, as in section 2, the log-likelihood function 
based on a sample of n independent observations 
is: 
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is the Poisson probability, and covariates are 
introduced by setting )'exp( βλ ii x= . As 

)1(
1

0
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l
iliJ ωω , the log-likelihood function can 

be expressed more compactly as 
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with Pi and the ilω ’s are defined as above. 
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Now consider the (conditional) mean and 
variance of the data in this more general MIP 
model. Let the value of yi when ji Ry ∈  be rj. 
Then, 

!/)exp(],|.[Pr j
r
iiiJijiiji rzxrY iλλωω −+==      ;      

j = 0, 1, 2, …., J-1 
and  

!/)exp(],|.[Pr J
r
iiiJiiJi rzxrY Jλλω −==       

The first and second raw moments for the 
Poisson distribution are iλ  and )( 2

ii λλ + , so 
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and the ijω ’s are functions of the zi’s. These two 
expressions collapse to their counterparts in the 
section 2 in the binary Logit case, and to 
equations (9) and (10) in Melkersson and Rooth 
(1999) when the only two inflated values are zero 
and two. The mean and variance expressions 
indicate that the model may account for either 
over-dispersion or under-dispersion in the data. 
As Melkersson and Rooth (1999, p. 195) note, 
even in the case where J = 2, the degree of 
departure from equi-dispersion is a complicated 
function of the parameters. 
 
4. MORE GENERAL MODELS 
 
4.1 The Hermite Distribution 
 
Let us now consider a distributional basis for 
modeling count data that allows for both multi-
modality and departures from equi-dispersion, 
and that has, to our knowledge, not been 
exploited previously in the econometrics 
literature. This is the Hermite distribution (Kemp 
and Kemp, 1965), which is a form of generalized 
Poisson distribution and is so-named because the 
expressions for its probabilities and factorial 
moments can be expressed in terms of the 
coefficients of (modified) Hermite polynomials. 
 
Kemp and Kemp show that this distribution arises 
naturally in several ways. For instance, the 
bivariate Poisson and the Poisson-Binomial 
distributions are both special cases of the Hermite 
distribution. The sum of an ordinary Poisson 
variate and an independent Poisson ‘doublet’ 
variate is also Hermite-distributed; and the sum 
of two correlated Poisson variates has a 
distribution (first established by McKendrick, 
1926) that is also of the Hermite form. This also 
applies to the distribution of a sum of a finite 

number of correlated Poisson variates, derived by 
Maritz (1952). In  the current context, this latter 
interpretation of the Hermite distribution  is 
appealing, as it allows for a situation where 
several separate but correlated Poisson processes 
(with different means) may be generating the 
data, and this may be reflected in count-inflation 
and multi-modality at different values. As we will 
see below, the Hermite distribution exhibits over-
dispersion, adding to its appeal here. 
 
The p.m.f. for the Hermite distribution can be 
expressed in several ways, but the following 
representation is convenient: 
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where [.] denotes the integer part of the 
argument, and a1 and a2 are the (non-negative) 
parameters of the distribution. The mean and 
variance of this distribution are (a1+2a2) and 
(a1+4a2) respectively. Unless a2 = 0  (the  Poisson 
case), we have over-dispersion. 
 
Finally, as is the case for all generalized Poisson 
distributions, the probabilities follow a simple 
recursion scheme. For the Hermite distribution 
if ].[Pr rYp ir == , then: 

)1/()2( 1211 ++= −+ rpapap rrr ;      r = 2, 3, ……. 

)}(exp{
)(

210

011

aap
pap

+−=
=

 

  
We are not aware of any previous discussion  of 
introducing covariates into models based on the 
Hermite distribution. The mean involves both of 
the parameters a1 and a2, so matters are less 
straightforward than in the Poisson case. One 
possibility is to introduce the covariates by 
assigning )'exp( 111 βii xa = , and retaining a2 (> 0) 
as a parameter to be estimated. In this case 

2111 2)'exp(]|[ axxyE iii += β ; 

2111 4)'exp(]|[ axxyVar iii += β .  
Alternatively, we can assign )'exp( 111 βii xa =  
and )'exp( 222 βii xa = , so the conditional mean is 

0)'exp(2)'exp(]|[ 22111 >+= ββ iiii xxxyE .   
Expressing both the mean and variance as 
positive functions of the covariates would not 
guarantee the positivity of a1i and a2i at all sample 
points, in general. However, in the case of just 
two inflated counts, the fact that a Hermite 
variate can be interpreted as the sum of two 
correlated Poisson variates can be exploited. 
Then from Kemp and Kemp (1965, p.390, eq. 
58), the covariates could be introduced directly 
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through the means of the underlying variates by 
setting 1222111 2)'exp()'exp( σββ −+= iii xxa  and 

122 σ=ia , where σ12 denotes the covariance 
between the two implicitly underlying variates, 
and is a parameter to be estimated. Using any of 
these approaches, the Hermite distribution can 
accommodate covariates in a very flexible way, 
and can simultaneously model over-dispersed and 
multi-modal (multinomially-inflated) data. 
 
4.2 An Alternative Parameterization 
 
Estimation of the Hermite distribution by MLE 
can be challenging, especially in the presence of 
covariates. Typically, the ikelihood function has 
several local maxima. Sometimes it is 
computationally convenient to re-parameterize 
the Hermite distribution in terms of 2/1

21 )2( a=θ  

and 2/1
212 )2( −= aaθ . Then, 

)1/()( 1
2

1211 ++= −+ rppp rrr θθθ ; r = 2,3, ……. 

)}2/(exp{

)(
2

1210

0211

θθθ

θθ
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=

p

pp
 

Then the mean and variance are )( 211 θθθ +  and 
)2( 211 θθθ + . Again, covariates can be introduced 

in various ways, the simplest by assigning 
)'exp( 111 βθ ii x= ,  and retaining θ2 ( > 0) as a 

parameter to be estimated. Then,  
])')[exp('exp(]|[ 211111 θββ += iiii xxxyE  and 

])'exp(2)['exp(]|[ 211111 θββ += iiii xxxyVar .  
This alternative parameterization of the model is 
used in sections 5.2 and 5.3 below. 
 
The MIP model of section 3 can be generalized 
further by replacing the Poisson distribution with 
the Negative Binomial or Hermite distributions. 
Count-inflation could then be modeled in an even 
more flexible manner, but recall that the Hermite 
distribution is already capable of capturing count-
inflation in its own right. Using the primary 
approach to incorporating covariates suggested in 
section 4.1, if we generalize the MIP model by 
using Hermite probabilities, we have what we 
will call the MIH model: 
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where:  
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Let the value of yi when ji Ry ∈  be rj. Then, 
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So, as the mean and variance of the Hermite 
distribution are (a1i+2a2) and (a1i+4a2), we have: 
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Again, the model may account for either over-
dispersion or under-dispersion in the data, once 
count-inflation is explicitly built into the model. 
 
5. EMPIRICAL APPLICATIONS 
 
5.1 Leucocyte Data 
 
The (over-dispersed) count data for bacteria in 
leucoctyes studied by McKendrick (1926) and 
Kemp and Kemp (1965) are summarized in 
Figure 1. Table 1 provides the results of 
estimating a Poisson model, an Hermite model, 
and a “two-inflated” Poisson (2IP) model to these 
data by MLE. By construction, the 2IP model 
must exactly account for the number of “2” 
values in the data, given the absence of 
covariates. Whether this constraint is imposed or 
not, the basic Hermite model out-performs the 
Poisson models in terms of the fit of the counts. 
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Figure 1. Number of Bacteria in Leucocytes. 
Source: McKendrick (1926) 
 
Table 1.  MLE Results (Bacteria in Leucocytes) 

Poisson     Hermite     2IP   
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log(λ) -1.6094   
  (0.129)   
a1        0.0135   
      (0.007)   
a2         0.0932  
                   (0.018)   
γ0       -2.3601             
       (0.206)            
β0        0.0301 
       (0.007) 
logL    -177.77 -116.34     -127.76 
  
Asymptotic standard errors are in parentheses.  
 
Table 2. Actual and Predicted Counts 

 (Bacteria in Leucocytes) 
r      Actual      Poisson      Hermite      2IP 
  
0      269           245.7 269.6      266.0  
1          4              49.1     3.7          8.0  
2        26  4.9   25.2        26.0  
3          0  0.3     0.3          0.0  
4          1  0.0     1.2          0.0 
 
5.2 Botswana Fertility Data 
 
The next example uses data on fertility in 
Botswana to model the number of living children 
for 4,361 women in a 1988 survey reported by 
Drovandi (2006). The data in Figure 2 are over-
dispersed, but there is no evidence of count-
inflation. To simplify the maximization of the 
likelihood function we use the alternative 
parameterization of the Hermite distribution with 

21 2a=θ  and 212 2/ aa=θ . Then, because 
])')[exp('exp(]|[ 211111 θββ += iiii xxxyE , the 

marginal effect for the kth covariate at observation 
i is =∂∂ ikii xxyE 11 /]|[ ×])'[exp( 111 kix ββ  

])'[exp( 211 θβ +ikx . We need 02 >θ  to ensure 
the positivity of the conditional mean and 
variance, so the marginal effects have the same 
signs as the associated coefficients. 
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Figure 2. Number of Children. Source: 
Wooldridge (2002). 
 
Table 3. MLE Results (Fertility Data) 

Poisson     NegBinII Hermite  

 
log(λ) 0.8188      0.8188 
 (0.010)     (0.016) 
log(η2)      -0.4763 
      (0.042) 
θ1    1.2147 
    (0.015)  
θ 2    0.6524 
    (0.032) 
logL -9598.56    -8704.56        -8806.86 
 
Asymptotic standard errors are in parentheses.  
 
Table 3 reports the basic MLE results with no 
covariates. The Poisson model is rejected in 
favour of the NegBinII models on the basis of a 
likelihood ratio test. However, in Table 4 we see 
that despite the over-dispersion of the data, the 
counts for the children predicted by the NegBinII 
model are inferior to those from the Poisson 
model, which in turn is clearly dominated by the 
Hermite model. We focus on the latter model 
when introducing covariates.  
 
Table 4. Actual and Predicted Counts (Fertility 
Data) 
r     Actual     Poisson     NegBinII    Hermite
  
0     1132        451.5 2249.5       944.2  
1       907      1024.0 1221.0       748.2  
2       696      1161.1             537.2       993.0  
3       528        877.7             217.9       630.2  
4       392        497.6               84.7       491.1  
5       255        225.7               32.0       263.8  
6       197          85.3               11.9       155.6  
7       134          27.6                 4.4         73.2  
8         68            7.8                 1.6         35.9 
9         32            2.0                 0.6         15.2 
10       13            0.4                 0.2           6.5 
11         3            0.1                 0.1           2.5 
12         3            0.0                 0.0           1.1 
13         1            0.0                 0.0           0.3 
 
As there is no allowance for count inflation in 
these specifications, the Poisson models are 
nested within their Hermite counterparts. Thus, 
the significance of the estimates of θ2 lends 
further support for the Hermite specifications 
over the Poisson models in each case. 
 
 Estimated Poisson and Hermite models with 
various covariates are reported in Table 5. The 
covariates are: CATH = 1 if respondent is 
Catholic, = 0 otherwise; EVERMARR = 1 if 
respondent has ever been married, = 0 otherwise; 
EDUC = years of formal education; and URBAN 
= 1 if respondent lives in an urban centre, = 0 
otherwise; and USEBC = 1 if the respondent ever 
uses birth control, = 0 otherwise. The signs of the 

923



 

coefficients (and hence the marginal effects) are 
the same whether a Poisson or Hermite 
specification is used. When the obvious 
covariate, “age of the woman” was considered, 
we were unable to maximize the likelihood 
function for the Hermite model. In the case of the 
Poison model this covariate had a positive 
marginal effect, as expected, but in that model the 
CATH dummy variable was insignificant. 
 
Table 5. MLE Results With Covariates (Fertility 
Data) 

       Poiss1   Herm1     Poiss2     Herm2
    

β0        0.6381    -0.0785    0.4828   -0.2521 
       (0.025)     (0.030)    (0.026)   (0.036) 
β1        0.0850     0.0562     0.0646    0.0443 
(CATH)       (0.035)     (0.030)    (0.035)   (0.031) 
β2        0.9407     0.6351     0.8677    0.6086 
(EVERMARR) (0.023)    (0.020)     (0.023)   (0.021) 
β3       -0.0617   -0.0406    -0.0754  -0.0514 
(EDUC)       (0.003)     (0.002)    (0.003)   (0.003) 
β 4      -0.1611    -0.1053    -0.1970  -0.1334 
(URBAN)       (0.021)     (0.017)    (0.021)   (0.018) 
β 5             0.4676    0.3201 
(USEBC)            (0.022)    (0.018) 
θ2          1.0652            1.2566 
          (0.071)                   (0.092) 
logL      -8001.5    -7809.0   -7770.2   -7653.4 
 
Asymptotic standard errors are in parentheses.  
  
5.3 Hot 100 Hits 
 
Our final application relates to data for the 965 
“number 1” hits on the Hot 100 chart over the 
period January 1955 to December 2003. The start 
of this sample period enables us to capture the 
rock and roll era, and all seventeen of Elvis 
Presley’s number one hits. The end of the sample 
avoids the recent impact of downloading digital 
music on the internet. The data were compiled 
and analyzed in various ways by Giles (2006, 
2007a, 2007b). For a recording that reaches the 
number one spot, TOP measures the number of 
weeks that it stays at number one beyond the 
minimum of one week. We also allow for re-
entry into the top spot after having being 
relegated to a lower position in the chart. The 
maximum number of “extra” weeks at the top is 
15 (Figure 3) and the data are moderately over-
dispersed.  
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Figure 3: Number of “Extra” Weeks at Top of 
the Hot 100 Chart. Source: Giles (2006). 
 
Table 6. MLE Results (Hot 100 Data) 

Poisson   ZIP NegBinII      Hermite  
 

log(λ) 0.5621              0.5621   
 (0.041)              (0.041) 
log(η2)              -0.0222  
              (0.083)   
θ1        1.0338
                            (0.025) 
θ 2        0.6633 
       (0.063) 
γ0             -0.9007 
              (0.083) 
β0               2.4672 
              (0.043) 
logL     -2063.7  -1884.5 -1741.4  -1829.1 
 
Asymptotic standard errors are in parentheses.  
 
Table 7. Actual and Predicted Counts (Hot 100 
Data) 
r    Actual  Poisson   ZIP  NegBinII  Hermite
  
0      337      167.0    337.0   616.6     284.9 
1      249       292.9    143.6   223.6     195.3 
2      139       256.9    177.2     80.2     219.2 
3        93       150.3    145.7     28.7     119.7 
4       47         65.9      89.9     10.2         79.1 
5       35         23.1      44.3       3.6      36.4 
6       21           6.8      18.2       1.3        18.2 
7       13           1.7        6.4       0.5          7.3 
8         9           0.4        2.0       0.2          3.1 
9         8           0.1        0.5       0.1          1.1 
10       5           0.0        0.1       0.0          0.4 
11       2           0.0        0.0       0.0          0.1 
12       2           0.0        0.0       0.0        0.0 
13       4           0.0        0.0       0.0        0.0 
14       0           0.0        0.0       0.0        0.0 
15       1           0.0        0.0       0.0        0.0 
 
Table 6 shows the results of estimating some 
basic models by MLE. The Poisson model is 
clearly rejected in favour of the NegBinII model 
using a LRT, and the ZIP and Hermite models 
out-perform the Poisson and NegBinII models in 
terms of the predicted counts reported in Table 7. 
Table 8 shows the results of introducing  
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covariates into the Poisson, ZIP and Hermite 
models. The covariates are: ELVIS = 1 if the 
recording was by Elvis Presley, = 0 otherwise; 
FEMALE = 1 if the artist was a solo female, = 0 
otherwise; INST = 1 if the recording was purely 
instrumental, = 0 otherwise; and NONCON = 1 if 
the recording  topped the charts in non-
consecutive weeks, = 0 otherwise. Other 
covariates, including a dummy variable for 
recordings by the Beatles, were found to be 
insignificant. Importantly, the covariates that are 
significant in these count data models are exactly 
those that were significant in the survival models 
reported by Giles (2007a). 
 
Table 8. MLE Results With Covariates  
(Hot 100 Data) 

Poisson     ZIP1    ZIP2    Hermite 
   
γ0     -0.9483   -0.9204   
        (0.086)   (0.086) 
γ1     -2.0842 
(ELVIS)      (1.377) 
β0  0.4608   0.8283    0.8315     -0.0377 
  (0.050)    (0.021)    (0.021)    (0.027) 
β1  0.9098   0.6043     0.5874    0.5516 
(ELVIS)  (0.186)    (0.097)    (0.097)   (0.091) 
β2  0.1809   0.0845     0.0831    0.1127 
(FEMALE) (0.099)    (0.046)    (0.046)    (0.039) 
β3  0.3852      0.3143    0.3123    0.2373 
(INST)      (0.216)     (0.085)   (0.085)   (0.073) 
β 4  0.6293      0.2874    0.2846    0.3838 
(NONCON)(0.120)    (0.082)    (0.082)   (0.081) 
θ2                                                 0.6836 
         (0.066) 
logL    -1994.25   -1869.67 -1866.97  -1803.13 
 
Asymptotic standard errors are in parentheses.  
 
6. CONCLUSIONS 
 
We have suggested various ways of extending the 
traditional models for count data to allow for 
over-dispersion and for excess counts at multiple 
values. One of these suggestions is to employ the 
Hermite distribution as a basis for the modeling. 
This distribution has the advantage of being able 
to deal with both of the phenomena in which we 
are interested. We have presented several 
empirical illustrations that lend credence to the 
use of this distribution, and for the first time we 
show how the Hermite distribution can be used to 
model with covariates. These empirical 
illustrations lay the groundwork for the use of 
Hermite regression to model count data in more 
complete studies. Work in progress includes 
using the Hermite models with covariates to 
analyze currency crises and alcohol consumption 

behaviour, and the development of various 
specification tests. 
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