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EXTENDED ABSTRACT 
 
Saddle-path instabilities frequently arise in 
dynamic macroeconomic models with forward-
looking expectations.  Macroeconomic models 
with saddle-path instabilities can be solved using 
shooting algorithms, such as forward-shooting 
and reverse-shooting.  In practice, such 
macroeconomic models, when derived from 
optimizing behavior, are also likely to contain 
non-linearities 
 
In this paper, we investigate the interaction 
between the use of shooting algorithms and the 
precise specification of non-linear dynamic 
macroeconomic models.   
 
First, we consider the basic Cagan (1956) Model 
augmented by perfect foresight for price 
expectations.  This gives us the well-known 
model by Sargent and Wallace (1973).  We 
consider both a linear specification of the model 
(expressed in logarithms) and a non-linear 
specification (expressed in levels). 
 
For the linear model,  denotes the price level 
(expressed in logarithms) and 

p
m  denotes the 

exogenously fixed money supply (expressed in 
logarithms).  For the non-linear model, P  
denotes the price level and M  denotes the 
exogenously fixed money supply.   
 

Examination of the linear specification of the 
model, shows that there are essentially three types 
of solution path:  
(a) the model can jump to the equilibrium given 
by p m= ; or  
(b) p can diverge to ; or  −∞
(c) p can diverge to . +∞
 
 
 

This corresponds to the following types of 
solution path for the non-linear specification of 
the model: 
(a) the model can jump to the equilibrium given 
by P M= ; or 
(b) P can converge to the equilibrium given by 

0P = ; or 
(c) P can diverge to +∞ . 
 
Thus, for the vast majority of initial conditions, 
the variable P will either diverge; or converge to 
the stable equilibrium given by .  It is highly 
improbable that a randomly chosen initial 
condition will lead the model to the equilibrium 
given by 

0P =

P M= . 
 
It is essentially this property of the solution to the 
non-linear model that drives the results.  The non-
linear model has two equilibria.  Given a random 
choice of initial condition, the variable P will 
either diverge; or converge to the stable 
equilibrium given by 0P = .  With probability 1, 
it will not locate the equilibrium given by P M= . 
Thus, the forward-shooting algorithm will almost 
certainly conclude that a path converging to 

0P = is the appropriate solution.  This, of course, 
is the incorrect solution. 
 

Because the reverse-shooting algorithm requires 
the specification of the appropriate equilibrium 
steady-state, it does not suffer from the problem 
that it will choose the wrong equilibrium.  By 
specifying the appropriate equilibrium, that is, 
P M= , it is possible to ensure that the correct 
path is chosen by the reverse-shooting algorithm.   
 
We then use a more complex macroeconomics 
framework to demonstrate how similar issues can 
arise in larger models. 
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INTRODUCTION 

Saddle-path instabilities frequently arise in 
dynamic macroeconomic models with forward-
looking expectations.  Macroeconomic models 
with saddle-path instabilities can be solved using 
shooting algorithms, such as forward-shooting 
and reverse-shooting.  In practice, such 
macroeconomic models, when derived from 
optimizing behavior, are also likely to contain 
non-linearities 

In this paper, we investigate the interaction 
between the use of shooting algorithms and the 
precise specification of non-linear dynamic 
macroeconomic models.  We show that, with 
some model specifications, it is possible that a 
forward-shooting algorithm will choose an 
inappropriate solution path. 

This paper extends issues previously discussed by 
Herbert, Stemp and Griffiths (2005) and Stemp 
and Herbert (2007). 
 
2.  THE EXTENDED CAGAN MODEL 
 
The linear model (expressed in logarithms) 
 
First, we consider the basic Cagan (1956) Model 
augmented by perfect foresight for price 
expectations.  This gives us the well-known 
model by Sargent and Wallace (1973), 
represented by the following equation: 
 
m p pα− = −     (1) 

 
where α   is positive, all variables are functions 
of time, and lower-case letters denote logarithms: 
p = price level (expressed in logarithms); and 
m = nominal money stock (expressed in 
logarithms), assumed to be constant. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 
Shock to Money Supply 

 

This is a linear model and has a unique 
equilibrium given by: p m= . 
 
Starting from an initial condition given 
by 0(0)p p= , the dynamics of p are described by 
the following equation: 

[ ]
1

0

t
p m p m e α

⎛ ⎞+⎜ ⎟
⎝ ⎠= + −    (2) 

Whenever 0p m≠ , then  diverges.  Assuming 
that  evolves continuously, then following an 
increase in 

p
p

m  from 1m  to 2m  as shown in Figure 
1, the dynamics of   can be described by Figure 
2.  

p

 
p 

 
 
 
 
 
 
 
 

 
 
 
 time 
 

Figure 2 
Price Dynamics: Continuous Adjustment from 

Initial Condition 
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Figure 3 
Price Dynamics: Initial Jump in Prices 

 

Sargent and Wallace’s (1973) seminal 
contribution was to suggest that one way we can 
handle the perverse result of instability is to allow 
prices to jump. Assume initial equilibrium where 

1(0)p m= . Then let m  increase from 1m  to 2m .  

2m

time 

1m

m

time 

1m

p

1111



Then if p must evolve continuously, will 
decline exponentially.  If  jumps to 

p
p 2m  when 

money supply jumps, then this gives a stable 
solution.  This gives the result for the time-path of 
prices as described in Figure 3. 

This use of an initial jump in an endogenous 
variable following an initial shock to the economy 
has become the standard approach to solving 
dynamic models with at least some variables 
having expectations that satisfy a rational 
expectations assumption.  Blanchard and Kahn 
(1980) have extended this approach to show that, 
following an initial shock, an economy will 
evolve towards a stable equilibrium if there are as 
many “jump variables” as there are unstable 
eigenvalues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
Forward-Shooting in Two-Dimensional Model 

 
The non-linear model (expressed in levels) 
 
The above model specification can be rewritten in 
levels as follows: 

2

1

.log PP P
M

α⎡ ⎤= ⎢ ⎥⎣ ⎦
   (3) 

 
The variables are as for the model above except 
that upper case letters denote levels, so that: 
P = price level; and 
M = nominal money stock, assumed to be 
constant. 
 
This specification of the model has two equilibria: 
 

0P =      (4) 
 
and 
 
P M= .     (5) 
 

Examination of the linear specification of the 
model, shows that there are essentially three types 
of solution path:  
(a) the model can jump to the equilibrium given 
by p m= ; or  
(b) p can diverge to −∞ ; or  
(c) p can diverge to +∞ . 
 
This corresponds to the following types of 
solution path for the non-linear specification of 
the model: 
(a) the model can jump to the equilibrium given 
by P M= ; or 
(b) P can converge to the equilibrium given by 

0P = ; or 
(c) P can diverge to +∞ . 
 
Thus, for the vast majority of initial conditions, 
the variable P will either diverge; or converge to 
the stable equilibrium given by .  It is highly 
improbable that a randomly chosen initial 
condition will lead the model to the equilibrium 
given by 

0P =

P M= . 

search  here 
1x

 
3.  SOLVING THE MODELS USING 
FORWARD-SHOOTING 
 
The forward-shooting approach 

In the case of the standard two-dimensional 
model, forward-shooting requires searching over 
a grid of initial points (see Figure 4). 

 
Forward-shooting for higher dimensional models 
requires searching over a larger grid (equal to the 
entire space) with the dimension of grid equal to 
the sum of stable and unstable eigenvalues (see 
Figure 5). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
Forward-Shooting in Higher-Dimensional 

Models 

In all cases, the success of the solution can be 
assessed by evaluating whether or not the chosen 

 

2x  

2x  

1x  search here

3x  
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solution gives a time-path for each variable that 
goes from the chosen initial condition to (a small 
neighbourhood of) the steady-state.   
 

Model solutions 

The linear model has a unique steady-state 
equilibrium, and all other initial conditions other 
than the one associated with this steady-state, will 
lead to a divergence in p.  The forward-shooting 
approach will reject all divergent solutions.  Thus, 
a systematic search by the forward-shooting 
algorithm will eventually locate the unique jump 
and dynamic path that converges towards the 
unique equilibrium, given by p m= .  This is the 
solution considered the correct one by the 
theoretical literature. 

The non-linear model has two equilibria.  Given a 
random choice of initial condition, the variable P 
will either diverge; or converge to the stable 
equilibrium given by 0P = .  With probability 1, 
it will not locate the equilibrium given by P M= . 
Thus, the forward-shooting algorithm will almost 
certainly conclude that a path converging to 

is the appropriate solution.  This, of course, 
is the incorrect solution. 

0P =

 

4. SOLVING THE MODELS USING 
REVERSE-SHOOTING 

The reverse-shooting approach 

In the case of the standard two-dimensional 
model, reverse-shooting involves just one search 
in reverse time starting from the neighbourhood 
of the steady-state.  The model dynamics throw 
the dynamic solution onto the stable arm of the 
saddle-path.  See Figure 6. 

 
 

 

 

 

 
 
 
 
 
 
 

Figure 6 
Reverse-Shooting in Two-Dimensional Model 

Reverse-shooting for higher dimensional models 
with more than two stable eigenvalues requires 
searching over a grid (the stable manifold) with 
the dimension of grid equal to the number of 
stable eigenvalues (see Figure 7). 
 
Model solutions 

As for forward-shooting, the unique equilibrium 
of the linear model ensure that the correct 
equilibrium and associated dynamic path will be 
chosen. 

Because the reverse-shooting algorithm requires 
the specification of the appropriate equilibrium 
steady-state, it does not suffer from the problem 
that it will choose the wrong equilibrium.  By 
specifying the appropriate equilibrium, that is, 
P M= , it is possible to ensure that the correct 
path is chosen by the reverse-shooting algorithm.   

Furthermore, the other equilibrium, that is, 0P = , 
will be associated with a stable eigenvalue.  
Hence, it will be associated with an infinite 
number of different solution paths, all equally 
plausible, but unable to be distinguished by the 
reverse-shooting algorithm. 

 
1x   

 
 
 
 
 

 

 

 

 

 

Figure 7 
Reverse-Shooting in Higher-Dimensional 

Models 

 

5. MORE COMPLICATED MODELS 
 
The linear model (expressed in logarithms) 

The following model has previously been 
considered by Stemp and Herbert (2006) and is an 
extension of that described by Turnovsky (2000).  
It can be derived from the model of Section 2 by 
adding a labour market defined by both 
employment and wages and by introducing 
sluggish adjustment for both these variables.  The 
model is given by the following set of equations: 

 

start here 

1x  

2x  

search here

2x  

3x  
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1 2m p y pα α− = −    (6) 
 

(1 ) ,0 1y nβ γ γ= + − < <    (7) 
 

(n n w )pθ δ γ= − − +    (8) 
 

(w n n)η= −     (9) 
 
where Greek symbols denote parameters with a 
positive value, all variables are functions of time 
and lower-case letters denote logarithms: 
y = output (expressed in logarithms); 
n = employment (expressed in logarithms); 
n = full employment (expressed in logarithms); 
p = price level (expressed in logarithms); 
m = nominal money stock (expressed in 
logarithms), assumed to be constant; and 
w = wage rate (expressed in logarithms). 
 
Since this model is linear, it has a unique 
equilibrium which satisfies the following 
equations: 
 

1m p yα− =     (10) 
 

(1 )y nβ γ= + −     (11) 
 

n w pδ γ− = −     (12) 
 

n n=      (13) 
 

The non-linear model (expressed in levels) 

An equivalent model specification can be 
rewritten in levels as follows: 

1 1 2

1
(1 )..log P A NP P

M

α γ α α−⎡ ⎤
= ⎢

⎣ ⎦
⎥   (14)  

.(1 ).log P ANN N
W

θγγ −⎡ ⎤−
= ⎢

⎣ ⎦
⎥   (15) 

.log NW W
N

η
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   (16) 

The variables are as for the model above except 
that upper case letters denote levels, so that: 
Y = output; 
 N = employment; 
N = full employment; 
P = price level; 
M = nominal money stock, assumed to be 
constant; and 
W = wage rate. 
 
As for the extended Cagan model, this non-linear 
specification of the model has multiple equilibria.  

There is an equilibrium that corresponds to the 
equilibrium for the linear specification of the 
model.  But there is another equilibrium as well.  
For example, there is an additional equilibrium 
given by: 
 

0P =      (17) 
 
N N=      (18) 
 

0W =      (19) 
 
We will demonstrate below that this leads to 
similar solution issues as arose in the case of the 
extended Cagan model. 
 
6.  SOLVING THESE MODELS USING 
SHOOTING METHODS 
 
Using forward-shooting 

It is possible to derive analytic solutions for the 
linear version of the complicated model but this 
model is too complex to derive an analytic 
solution for the non-linear version.  Accordingly, 
in order to derive comparable solutions for these 
models it is necessary to calibrate the underlying 
parameters.   

In Stemp and Herbert (2006), we focused on the 
case when the eigenvalues of the linear model 
were complex-valued so that the model exhibited 
cyclic dynamic behavior.  We discussed in 
considerable detail the forward-shooting and 
reverse-shooting algorithms and the properties of 
corresponding solutions to the linear model.   

In that paper, we showed that the most crucial 
aspect in ensuring similar solutions, using the two 
shooting algorithms, was making sure that the 
step-size of the shooting algorithms was 
sufficiently small.  This previous paper also 
established that a unique and meaningful solution 
was derived for the linear model using each 
algorithm. 

In the case of the non-linear model, however, one 
runs into similar problems to those encountered 
earlier in the paper when using the forward-
shooting algorithm to solve the non-linear version 
of the extended Cagan model.  Specifically, the 
forward-shooting algorithm chooses a time-path 
that converges towards the equilibrium given by 
equations (17-19).  One such solution is 
demonstrated in Figure 8.  This would not be 
considered as the conventional solution to the 
underlying problem described by the model.  It 
can best be described as the “wrong” solution. 
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Figure 8 

Forward-Shooting: Solution of Non-Linear Model 

 

Using reverse-shooting 

As in the previously considered model, the 
reverse-shooting algorithm works fine for both 
the linear and non-linear model, choosing the 
appropriate solution in each case.  For the linear 
model this arises because there is a unique 
equilibrium.   

In the case of the non-linear model, the correct 
solution is derived provided the desired 
appropriate initial equilibrium is chosen. 

Figure 9 shows the dynamic solution path derived 
for both linear and non-linear models, with the 
solutions to the linear model having been 
transformed so as to be comparable with solutions 
for the non-linear model.  The solutions are 
identical in both cases and converge to a 
meaningful (non-zero) equilibrium. 

 
7.  CONCLUSION 
 
In this paper, we have considered two 
macroeconomic models with alternative linear 
and non-linear specifications.  One version of 

each model, expressed in levels, is non-linear and 
has at least two steady-state equilibria. One of 
these equilibria has an economically-meaningful 
interpretation, while the other does not have a 
sensible economic interpretation.  A second 
version of each model, expressed in logarithms, is 
linear and has a unique steady-state equilibrium, 
which corresponds to the economically-
meaningful equilibrium of the non-linear version 
of the model.   

The dynamic solution of each model has a 
combination of stable and unstable eigenvalues so 
that any dynamic solution requires the calculation 
of appropriate “jumps” in endogenous variables.  
Attempts to solve these models, using forward-
shooting and reverse-shooting algorithms, show 
that the forward-shooting algorithm chooses the 
“wrong” solution for the non-linear model, but the 
“right” solution for the linear model.  The 
reverse-shooting algorithm chooses the “right” 
solution in both cases.  We have demonstrated 
how this result is driven by particular properties 
of each model. 
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Figure 9 
Reverse-Shooting: Solution of Both Linear and Non-Linear Models 
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