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EXTENDED ABSTRACT 

Complex systems consist of interacting entities or 

components. Different levels can be distinguished 

in a complex system, from the bottom level with 

the most fine-grained entities, through intermediate 

levels of composite entities, up to the level of the 

whole system. Properties and interactions of 

entities at a lower or micro-level give rise to 

properties and behaviour of more course-grained 

entities at a higher or macro-level, but the latter are 

not obviously predictable from the former. At the 

highest level, there is one macro-level entity 

consisting of the whole system. This phenomenon 

of macro-level properties and behaviour arising out 

of micro-level properties and behaviour, without 

being immediately apparent from them, is known 

as emergence, a fundamental property of complex 

systems.  

An example of a complex system in ecology is a 

population of organisms subdivided into several 

subpopulations. Such a system is often studied as a 

metapopulation using a modelling approach that 

addresses the particular characteristics of 

populations in patchy environments. 

Metapopulation theory is based on the idea of a 

„population‟ of local populations. 

The new Emergent Models methodology uses 

multi-agent simulations to study emergence in 

complex systems. Agents model components at 

different levels of a complex system. Emergent 

models reveal properties and behaviour of higher-

level agents as emerging from properties and 

behaviour of lower-level agents. 

Metapopulation models can be related to 

individual-based models. Ways of linking 

individual-based models with higher level 

metapopulation models are examined here by 

relating levels in multi-agent simulations using the 

Emergent Models methodology. Metapopulation 

dynamics distinguishes three levels in an 

ecosystem, with organisms at the lowest level, 

subpopulations of organisms at an intermediate 

level, and the total population consisting of 

subpopulations at the highest level. Thus, 

emergent models of subpopulation agents could be 

discovered from properties and behaviour of 

organism agents, and an emergent model of the 

total population could be discovered from 

properties and behaviour of subpopulation agents. 

Deriving higher-level emergent models from 

lower-level models was examined in ecosystem 

simulation, modelling a metapopulation with 

interacting monarch butterflies (Danaus plexippus) 

and their milkweed (Asclepias) host plants as a 

complex system with individual organisms at the 

micro-level and butterfly subpopulations around 

plant patches at the macro-level. Genetic 

programming algorithms, complemented with 

linear and non-linear regression techniques, were 

used to construct interacting macro-level patch 

subpopulation agents, together composing a 

metapopulation model, from micro-level 

simulations of individual butterflies interacting 

with plants. 

The experiments have demonstrated how, in a 

multi-agent simulation of a complex system, 

macro-level group agents can derive their 

behaviour from micro-level agents. Once that is 

done, simulations can be run with group agents 

instead of individual agents, yielding similar 

results. A complex system can thus be understood 

at the level of subsystem agents, enabling 

integration with other higher-level agents such as 

human managers. Further, group agent simulations 

use much larger space and time scales than 

individual level simulations, enabling huge 

performance gains. This makes possible numerous 

simulation experiments that would not be possible 

with micro-level simulations because of 

prohibitive time constraints. 
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1. INTRODUCTION 

Complex systems consist of interacting entities or 

components. Generally, a number of different 

levels can be distinguished in a complex system, 

from the bottom level with the most fine-grained 

entities, through intermediate levels of composite 

entities, up to the level of the whole system. 

Properties and interactions of entities at a lower or 

micro-level give rise to properties and behaviour 

of more course-grained entities at a higher or 

macro-level, but the latter are not obviously 

predictable from the former. At the highest level, 

there is one macro-level entity consisting of the 

whole system. This phenomenon of macro-level 

properties and behaviour arising out of micro-level 

properties and behaviour, without being 

immediately apparent from them, is known as 

emergence, a fundamental property of complex 

systems (see e.g. Bar-Yam 1997).  

Scientific research has often sought to understand 

one level of reality in terms of another „lower‟ 

level. This is illustrated by thermodynamics, 

describing properties of matter in terms of 

macroscopic parameters, and statistical mechanics, 

seeking to explain the laws of thermodynamics 

through the microscopic application of Newton's 

laws (Bar-Yam 1997, p. 58-95).  

1.1. Metapopulation Models 

An example of a complex system in ecology is a 

population of organisms subdivided into several 

subpopulations. Such a system is often studied as a 

metapopulation using a modelling approach that 

addresses the particular characteristics of 

populations in patchy environments (e.g. Hanski & 

Gilpin 1997; Hanski & Gaggiotti 2004). 

Metapopulation theory is based on the idea of a 

„population‟ of local populations and this idea is 

captured by a category of models called stochastic 

patch occupancy models (Ovaskainen & Hanski 

2004). These models are based on the assumptions 

that a landscape consists of discrete patches of 

breeding habitat surrounded by land that is 

unsuitable for the species under study, and that 

each habitat patch has only two possible states: 

occupied and unoccupied. A stochastic patch 

occupancy model describes how colonisation and 

extinction rates or probabilities of patches being 

occupied depend on the structure and present 

occupancy pattern of the landscape (Ovaskainen & 

Hanski 2004, p. 77, 83).  

Metapopulation models are often used in the 

context of conservation policy and tend to focus on 

colonisation and extinction effects. Although the 

metapopulation approach is useful, models should 

be developed to describe levels of local 

populations rather than only colonisation and 

extinction events. Attempts to take into account 

more details of local populations have been made 

by formulating so-called structured metapopulation 

models (e.g. Gyllenberg et al. 1997).  

1.2. Emergent Models 

To elucidate the relationships between components 

of complex systems and the emerging system level 

behaviour, verbal or mathematical analyses are 

typically used. Examples in population biology 

and ecology are described in Okubo and Levin 

(2001). More recently computer simulation has 

become available as an additional tool for complex 

systems studies. The metapopulation models 

introduced in Section 1.1 are mostly mathematical 

models, but computer simulation is also used to 

simulate such populations. 

Both mathematical modelling and computer 

simulation as tools for studying complex systems 

and emergence have strengths and limitations. A 

strength of mathematical models is that they lead 

to general and clearly understandable results. A 

limitation is that many simplifying assumptions 

have to be made to keep the analysis tractable. 

Computer simulations, on the other hand, can 

incorporate any desired complexity and be carried 

out without many of the simplifying assumptions 

necessary for mathematical modelling. However, 

their results are less general and can be hard to 

understand, if the simulation model is complex. 

Therefore, a general methodology is needed to 

derive macro-level properties and behaviour from 

individual micro-level properties and behaviour in 

complex system simulations, combining the 

strengths and avoiding the limitations of both 

mathematical modelling and of computer 

simulation. The Emergent Models methodology 

developed by Stolk (2005) and described by Stolk 

et al. (2003), which is outlined in Section 2, is 

such a methodology. 

1.3. Emergent Metapopulation Models 

Metapopulation models can be related to 

individual-based models. For example, the 

colonisation rate of empty patches in patch 

occupancy metapopulation models decreases with 

distance, while in individual-based models the 

same effect is achieved by assuming high 

migration mortality between patches or poor 

searching ability, and the two modelling 

approaches can be linked by determining 

parameters of a patch occupancy model using data 

from individual-based simulations (Ovaskainen & 
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Hanski 2004, p. 99). Ways of linking individual-

based models with higher level metapopulation 

models are examined here by relating levels in 

multi-agent simulations using the Emergent 

Models methodology. 

Metapopulation dynamics distinguishes three 

levels in an ecosystem, with organisms at the 

lowest level, subpopulations of organisms at an 

intermediate level, and the total population 

consisting of subpopulations at the highest level. 

Thus, emergent models of subpopulation agents 

could be discovered from properties and behaviour 

of organism agents, and an emergent model of the 

total population could be discovered from 

properties and behaviour of subpopulation agents.  

Potential applications would include estimating the 

potential for survival, or the expected time to 

extinction, of a population as a function of 

landscape characteristics; and relating individual-

based and metapopulation-level models with a 

view to defining weed or other pest control 

strategies involving macro-level decision making. 

These kinds of application areas could be 

supported much more effectively by using 

simulations with subpopulation agents (with agent 

models derived from previous individual-based 

simulations) to predict total population behaviour, 

than by using individual-based simulations 

directly. 

2. THE EMERGENT MODELS 

METHODOLOGY 

In order to combine the strengths of the 

mathematical and simulation approaches to 

scientific discovery, while avoiding their 

respective limitations, the Emergent Models 

methodology uses computer simulations to study 

how models of macro-level properties and 

behaviour of a complex system emerge from the 

properties and behaviour of the micro-level 

components of the system. This methodology 

consists of building multi-agent simulations (see 

e.g. Ferber 1999), with agents at different levels 

modelling micro-level and macro-level 

components of a complex system. Statistics 

produced by micro-level simulations are used to 

discover models describing properties and 

behaviour of macro-level components. Models 

discovered in this way are models of the properties 

and behaviour of higher-level agents emerging 

from properties and behaviour of lower-level 

agents, or emergent models.  

Various methods can be used to discover emergent 

macro-level models from micro-level simulations. 

If the variables of the model equations are already 

known from theoretical considerations and only 

unknown parameters need to be estimated, 

standard linear or non-linear regression techniques 

can be used. If the important variables also have to 

be discovered, more advanced techniques are 

needed, such as evolutionary algorithms or other 

machine learning methods. 

In the present work we use genetic programming 

(see e.g. Koza et al. 1999) to discover macro-level 

emergent models, as it is an all-purpose method 

with sufficient flexibility to be applicable to many 

interesting cases. Genetic programming is an 

extension of genetic algorithms (see e.g. Holland 

1975) and uses evolutionary mechanisms such as 

mutation and recombination to obtain a good 

computer program or mathematical function for 

solving a given problem in a population of 

possible solutions. A genetic programming search 

for solutions of a problem starts with an initial 

population of functions composed of operators and 

terminals appropriate to the problem. The 

operators are frequently merely standard arithmetic 

and logical operations. The terminals typically 

include the external inputs to the program or 

function as variables, and may also include 

constants and zero-argument functions. During the 

search, individuals representing possible 

combinations of operators and terminals are 

mutated and recombined, until a good solution is 

obtained. More details about genetic programming 

are given by Stolk and Hanan (2007). 

Genetic programming can be applied to many 

problems, as it performs a search based on trial and 

error, randomly mutating and recombining 

building blocks of possible solutions to obtain a 

best solution to a problem. The building blocks of 

solutions are provided by the programmer and can 

be defined in any desired way. We complement 

genetic programming with linear and non-linear 

regression in two ways. First, we use regression to 

estimate unknown parameters of those equations 

for which we make theoretical assumptions about 

the important variables. Second, after having 

determined the important variables of other 

equations with genetic programming, we use 

regression to improve the estimates of these 

equations‟ parameters.  

3. EXAMPLE: MONARCH BUTTERFLIES 

AND MILKWEED 

A fairly simple system to study metapopulation 

dynamics consists of monarch butterflies (Danaus 

plexippus) and milkweed plants (Asclepias). 

Milkweed is the only host plant of the monarch 

butterfly for egg laying (Zalucki 1983). In 
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addition, milkweed grows in patches, so the 

butterflies tend to concentrate in and around 

milkweed patches, giving rise to a system where 

metapopulation dynamics are easily studied. The 

present work in meant as an demonstration of the 

Emergent Models methodology and the monarch 

data are used to make a fairly realistic model of 

individual butterflies, but no attempt is made to 

model a real ecosystem.  

 

Figure 1. A screenshot of a micro-level simulation 

of monarch butterflies (small dots) and milkweed 

plants (large green and red dots). 

Figure 1 shows a simulation of monarch butterflies 

interacting with milkweed patches. The butterflies 

fly a distance 𝑑 at each simulation step, while 

turning an angle 𝜃 (picked at random). If 

butterflies observe the presence of milkweed 

plants, they decrease 𝑑 and increase the average 

value of 𝜃, as described by Zalucki (1983). In 

addition, butterflies lay eggs on milkweed plants. 

The eggs may hatch after some time, eventually 

producing new butterflies with a probability 

determined by mortality of eggs and immature 

individuals. It is assumed that surviving immature 

individuals appear as adult butterflies 28 days after 

egg-laying and can then leave their patch. They die 

with a probability which is determined by their 

environment and is lower in milkweed patches 

than in the non-milkweed area outside the patches.  

We have carried out computational experiments to 

derive a macro-level multi-agent model from 

simulations of individual butterflies interacting 

with milkweed plants. The macro-level agents 

simulate metapopulation dynamics at the level of 

subpopulations. A subpopulation is defined as the 

population of butterflies around one milkweed 

patch. Macro-level agents are patch 

subpopulations, as well as dispersal agents 

simulating the dispersal process. 

We subsequently used the macro-level agents in a 

multi-agent simulation, hypothesising that 

simulations with macro-level agents would yield 

results similar to those of simulations with 

individual insect agents, but with better insight in 

macro-level processes. This is important for 

example for defining intervention strategies related 

to policies of conservation or pest control. In 

addition, the macro-level simulations can be run 

with a much better performance than the full 

individual-based simulations. 

The macro-level agents we use are patch 

subpopulation agents observing variables such as 

their own patch population, patch area, patch 

radius, distances to other patches and emigrants of 

other patches. The population of the area outside 

the patches is considered an agent as well. The 

subpopulation agents use their observations to 

update their own population through appearances 

of new butterflies, deaths, immigration and 

emigration; and to produce emigrants.  

Emergent models are derived by providing to the 

genetic programming algorithm a set of variables 

and operators to be used for finding functional 

relationships between observations and acts. The 

algorithm will not only find particular functions, 

but also select the relevant variables to be observed 

by the patch subpopulation agents.  

The Emergent Models methodology is flexible in 

the sense that constraints can be imposed on the 

algorithm to find only models with characteristics 

specified by the researcher. In the present research 

the models to be discovered were constrained to 

models similar to existing metapopulation models. 

For some equations we use traditional approaches, 

defining their variables and structure by a priori 

reasoning, only leaving some unknown parameters 

to be determined by statistical curve fitting 

methods such as linear or non-linear regression. 

This makes possible an intuitive demonstration in 

line with contemporary research in ecology, 

especially metapopulation dynamics. However, we 

do not limit ourselves to curve-fitting methods and 

use our approach to search a space including 

different models and not only different parameters. 

In contrast to defining metapopulation models 

based on intuition, the Emergent Models 

methodology determines what multi-agent model 

is consistent with given assumptions about 

individual behaviour. In the present research the 

multi-agent model is inspired by metapopulation 

dynamics, but the approach is equally well 

applicable to problems not satisfying the 

assumptions of metapopulation dynamics. 
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It was attempted to find a macro-level multi-agent 

model describing the behaviour of each of 𝑛 patch 

agents and of the non-patch agent. The behaviour 

of each of 𝑛 patch agents 𝑖 (𝑖 = 1,… , 𝑛) was 

hypothesised to be described by equations of the 

form: 

𝐵𝑖 = 𝐹𝐵𝑖(𝑃𝑖) (1) 

𝑀𝑖 = 𝐹𝑀𝑖(𝑃𝑖) (2) 

𝐸𝑖 = 𝐹𝐸𝑖(𝑃𝑖) (3) 

𝐼𝑖 = 𝐹𝐼𝑖(𝐸𝑗 )  for 𝑖 ≠ 𝑗 ⊂ {0,… , 𝑛} (4) 

The behaviour of the non-patch agent was 

hypothesised to be described by:  

𝐵0 =  𝐹𝐵0
(𝑃0) (5) 

𝑀0 = 𝐹𝑀0
(𝑃0) (6) 

𝐸0 = 𝐹𝐸0
(𝐼0) (7) 

𝐼0 = 𝐹𝐼0 (𝐸𝑗 )  for 𝑖 ≠ 𝑗 ⊂ {0,… , 𝑛} (8) 

where, for 𝑖 ∈ {0,… , 𝑛}, 𝑃𝑖  is the population of 

patch 𝑖 at time 𝑡 ; 𝐵𝑖  , 𝑀𝑖  , 𝐼𝑖  and 𝐸𝑖  are numbers of 

appearances, deaths, immigrants and emigrants of 

patch 𝑖 between times 𝑡 and 𝑡 + 1, and 𝐹𝐵𝑖 , 𝐹𝑀𝑖 , 

𝐹𝐸𝑖  and 𝐹𝐼𝑖  are the functions to be found. 

Thus, appearances and deaths of a patch depend on 

the patch‟s population, emigration depends on its 

population and area, and immigration depends on 

its area and dispersal from a subset of other 

patches. Only a subset of other patches is assumed 

to be important for immigration of a given patch: 

patches outside this subset are not important, for 

example because they are too far away or because 

they are „hidden‟ from the patch under 

consideration by other patches in between. 

This general problem can be solved using 

Emergent Models by providing a genetic 

programming algorithm with possible operators 

and parameters as building blocks for the functions 

to be found. The methodology is very flexible and 

can be adapted easily to existing or assumed 

knowledge about the problem to be solved by 

imposing appropriate constraints on the genetic 

programming algorithm to allow different forms 

for the functions to be found. In the present case 

the following assumptions were made to constrain 

the functions. 

Numbers of appearances in a patch are explained 

by a constant appearance rate 𝛽𝑖  and an additive 

constant 𝛾𝑖  to take account of appearances due to 

eggs present in addition to adult individuals, so 

equations (1) become 

𝐵𝑖 = 𝛽𝑖𝑃𝑖 + 𝛾𝑖   for 𝑖 ∈ {1,… , 𝑛} (9) 

No appearances take place outside patches, so 

equation (5) becomes 

𝐵0 = 0  (10) 

Numbers of deaths in every subpopulation are 

explained by a constant death rate 𝜇𝑖  of a 

subpopulation, so equations (2) and (6) become 

𝑀𝑖 = 𝜇𝑖𝑃𝑖   for 𝑖 ∈ {0,… , 𝑛} (11) 

Emigration of a patch depends on the square root 

of population, because emigration happens on the 

edges of the patch areas, so, if population is 

roughly proportional to patch area, emigration is 

expected to be roughly proportional to patch 

circumference and thus to the square root of patch 

area or population and equations (3) become 

𝐸𝑖 = 𝜏𝑖 𝑃𝑖   for 𝑖 ∈ {1,… , 𝑛} (12) 

Emigration of the non-patch area depends linearly 

on immigration into the non-patch area and 

equation (7) becomes 

𝐸0 = 𝜗𝐼0  (13) 

Equations of these types can be fitted to observed 

data, or in our case simulated data, with standard 

linear and non-linear regression techniques. This 

was done with results as shown in Table 1, where 

equation (14) is the same as equation (10), 

equations (15) – (20) result from fitting equations 

(9), equations (21) – (27) result from fitting 

equations (11), equation (35) results from fitting 

equation (13) and equations (36) – (41) result from 

fitting equations (12). 

Immigration of the non-patch area was, as a result 

of the simulation design, equal to total emigration 

of all patches, so equation (8) becomes equation 

(28). Immigration of each patch was assumed to be 

potentially dependent on emigration of all other 

patch and non-patch subpopulation agents. To 

determine which other subpopulation agents 

contributed most to immigration of a given 

subpopulation agent, genetic programming was 

used to find that for each patch immigration was 

best explained by a linear function of emigration of 

the non-patch area. Subsequently, linear regression 

was used to calibrate the results, shown in 

equations (29) – (34) that realise equations (4). 
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Table 1. Emergent model of subpopulation agents‟ behaviour derived from an individual-based simulation. 

𝐵0 = 0 (14) 𝑀0 = 0.981𝑃0  (21) 𝐼0 =  𝐸𝑖
6
𝑖=1   (28) 𝐸0 = 0.286𝐼0  (35) 

𝐵1 = 0.0102𝑃1 + 8.103  (15) 𝑀1 = 0.00102𝑃1  (22) 𝐼1 = 0.280𝐸0  (29) 𝐸1 = 0.607 𝑃1  (36) 

𝐵2 = 0.0148𝑃2 + 4.938  (16) 𝑀2 = 0.00221𝑃2  (23) 𝐼2 = 0.325𝐸0  (30) 𝐸2 = 0.719 𝑃2  (37) 

𝐵3 = 0.0331𝑃3 + 0.794  (17) 𝑀3 = 0.00419𝑃3  (24) 𝐼3 = 0.167𝐸0  (31) 𝐸3 = 0.730 𝑃3  (38) 

𝐵4 = 0.0601𝑃4 + 0.260  (18) 𝑀4 = 0.00606𝑃4  (25) 𝐼4 = 0.0859𝐸0  (32) 𝐸4 = 0.713 𝑃4  (39) 

𝐵5 = 0.0643𝑃5 + 0.642  (19) 𝑀5 = 0.00803𝑃5  (26) 𝐼5 = 0.136𝐸0  (33) 𝐸5 = 0.947 𝑃5  (40) 

𝐵6 = 0  (20) 𝑀6 = 0  (27) 𝐼6 = 0.00694𝐸0  (34) 𝐸6 = 0  (41) 

 

As an example of data used and results, micro-

level simulation data and a plot of the discovered 

macro-level function for 𝐼2, described by equation 

(30), are shown in Figure 2. 

 

Figure 2. Micro-level simulation data (blue) and 

macro-level function (red) for 𝐼2 = 𝑓(𝐸0). 

In this model patch agents have an autonomous 

behaviour in the form of natural population 

increase. They interact with other patch agents by 

providing emigrants to them and by taking 

immigrants from them. Immigrants are a subset of 

dispersed emigrants from all other patch agents. It 

is not obvious from the outset which other patch 

agents are relevant for immigration in a particular 

patch. The genetic programming algorithm can use 

emigrants from any patch, but does not have to do 

so and will retain only those patch agents in the 

solution for a given patch that are relevant for 

obtaining a good immigration equation for that 

patch. Thus, the problem is partly to find optimal 

parameters for the equations, but also to determine 

the structure of each patch‟s immigration function 

by finding the subset of other patches contributing 

to a patch‟s immigration.  

Figure 3 is an example of simulation results 

obtained with the emergent macro-model. It shows 

the population of one patch from the beginning of 

the simulation until the end at hour 1012. The blue 

line shows the population generated by the micro-

level simulation, which has a time step of one 

minute. The red lines show the population 

generated by the macro-model, starting at the 

micro-simulation population levels at hours 600, 

700 and 800 respectively. 

 

Figure 3. Micro-level simulation (blue) and 

macro-level simulations (red) of 𝑃1 = 𝑓(𝑡). 

4. CONCLUSIONS 

This example demonstrates how, in a three level 

system, intermediate level group agents can derive 

their behaviour from micro-level agents. In order 

to focus on the simulation's multi-level character in 

this example and to keep its implementation as 

simple as possible, the derivation of the 

subpopulation agents' macro-level behaviour is 
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based on data generated by only one micro-level 

simulation. A logical next step is to run a 

representative number of micro-level simulations 

with different initial conditions. The derived 

macro-level behaviour would then be an average 

behaviour for all possible micro-level simulations, 

making the group agent simulation results more 

robust. 

In conclusion, with the Emergent Models 

methodology one can find emergent macro-models 

corresponding to micro-models of ecological 

systems. A three level system has been described 

consisting at the micro-level of insects interacting 

with plants, at an intermediate level of 

subpopulations of insects corresponding to plant 

patches, and at the macro-level of the entire system 

of insect population and plant patches. Once a 

model of subpopulation behaviour has been 

derived, “subpopulation-based” simulations can be 

run instead of individual-based simulations to 

obtain essentially the same results for the 

behaviour of the whole system or population.  

In this way, understanding of behaviour at the 

macro-level can be increased. In addition, 

simulation performance can be improved 

dramatically, at least after a “learning phase”, 

during which the macro-level behaviour is 

discovered by the genetic programming algorithm. 

A macro-model can be used to conduct numerous 

experiments that would not be possible with 

micro-level simulations. For example, we could 

add a probability distribution of random deviations 

to the macro-model and then use the macro-model 

for Monte Carlo simulations to study the behaviour 

of the model with different initial conditions, 

potentially solving policy problems such as the 

optimal patch structure for maintaining a 

population. 

The definition of the most appropriate macro-level 

agents depends on the application of the model. 

When the purpose of the modelling exercise is 

decision support, macro-level agents can be 

defined in terms of the entities decision makers 

perceive to be interacting with. Decision makers 

could be modelled as agents interacting with 

subpopulation agents rather than individual 

insects, for example. Multi-agent simulations at 

the macro-level could then be used in a natural 

way for evaluation of different policy scenarios.  
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