
Extending GIS with Object-Orientation for Environ-
mental Planning and Modeling

Jolma, A.

Helsinki University of Technology, Finland
Email: ari.jolma@tkk.fi

Keywords: Geospatial software, dynamic modeling, object-orientation, ontology

EXTENDED ABSTRACT

Using and linking geographic information systems
(GIS) efficiently with environmental modeling
remains a challenge. Several solutions have been
proposed for the impedance mismatch problem
between the data oriented domain of GIS and the
modeling oriented domain of environmental plan-
ning and management. Concepts that are important
for dynamic modeling, i.e., time and interaction of
different type of objects, are difficult to represent
in standard GIS. However, geoprocessing opera-
tions for raster and vector layers are well-defined
and standardized. In this paper we demonstrate
with a free and open source software how object-
orientation can be used to define new spatial layer
classes that are close to environmental planning
and modeling.

Computer programming and development of in-
formation systems advances through championing
increasingly complex subjects in machines. Ob-
ject-oriented programming (OOP, also OO analy-
sis, OO data modeling, etc) came into mainstream
use in early 90s but the paradigm was developed in
preceding decades. One of the strong benefits of
OOP is the possibility to implement abstract ideas
or generalizations of facts, i.e., design patterns
(Gamma et al 1994) or predicate logic, in program
code more explicitly that with earlier programming
paradigms. Ontological engineering uses very
similar concepts to OOP but it strives to being
more than of just immediate practical benefit. On-
tologies are increasingly also a subject of study in
geographic information science. A major impetus
for this research is the availability of huge collec-
tions of geospatial data that need to be integrated
in a meaningful way (Fonseca et al. 2002).

In this paper we describe how object-orientation is
applied in software called Geoinformatica to build
geospatial software for environmental modeling. A
layer is a fundamental paradigm in geospatial
software. At the core of Geoinformatica there is a
definition of an abstract geospatial layer. The ab-
stract layer class defines an object that can be
visualized with other layers, used as a component

in a simulation model, and manipulated within an
interactive programming environment.

In Geoinformatica the two traditional layer classes,
raster layer and vector layer, derive from the root
class and add respective computational capabili-
ties. The raster layer class combines the visual
methods with map algebra and the vector layer
class combines the visual methods with the simple
features analytical methods for geometric objects.
New layer classes can be defined easily by inherit-
ing from the root layer class and from classes that
provide computational capabilities.

For this study three new layer classes were devel-
oped: (i) a class, which maintains a list of geospa-
tial features in RAM and does not assume that they
share a geometry shape nor attributes, (ii) a class,
which acts as an interface to a raster time series,
and (iii) a simple multi-agent simulator, which
consists of a raster object and of a feature list class.
The feature list class utilizes the generic geospatial
feature class from the Perl bindings to the OGR
library, which provides access to several vector
data formats. The raster time series class was de-
veloped mainly for visualization purposes. It ex-
pects a simple text file in its constructor from
which it reads the filenames of the raster files and
associated dates. The other code of that class de-
fines a simple dialog box and associated code for
opening and showing or animating the requested
raster files. The simple multi-agent simulator layer
class code consists mostly of callback functions
that respond to user actions and implement the
model dynamics. A multi-agent simulator object
contains the agents as geospatial features object
and the world as a raster object.

The study demonstrates that it is possible to de-
velop a framework for spatial environmental mod-
eling with current free and open source software:
high-level programming language, graphical user
interface toolkit, and geospatial data access soft-
ware. Using object-orientation the geospatial layer
paradigm can be extended for environmental mod-
eling and software.

1287

1. INTRODUCTION

Using and linking geographic information systems
(GIS) or any geospatial software efficiently with
environmental modeling remains a challenge. Sev-
eral solutions have been proposed for the imped-
ance mismatch problem between the data man-
agement oriented domain of GIS and the modeling
oriented domain of environmental planning and
management. Proposed solutions are based on
methodology, data processing, and/or technology.
The most important methodology-based solution is
map algebra (Tomlin 1990, DeMers 2002, Pullar
2003), which has been implemented in most raster
GISs in some way and offers a spatial modeling
language for building dynamic simulation models.
The simple features data model and spatial access
and analysis methodology (Herring 2006) defines
a somewhat similar spatial modeling language for
geometric objects, but there are few reports of em-
bedding it into simulation models. Miller et at
(2005) discuss dynamic simulation models and
GIS functionality and present also an approach for
integrating them using a formalism that is based on
a graph of datasets (that are not limited to raster
layers) and tools. Solving environmental models
expressed as differential equations in 2D finite
element meshes is a standard methodology but it
commonly uses other specific software (e.g.,
CAD) and is linked to GIS via data exchange. So-
lutions based on data processing use the GIS as a
pre-processing tool to create datasets for special
purpose environmental models or management
tools and/or as a post-processing visualization tool.

Models and tools may be linked to or integrated
with GIS using different technological solutions.
The technological solutions and especially the im-
pact of personal computers and workstations that
allow interactive graphics and user-centric com-
puting have been studied since 1980’s (Loucks and
Fedra 1987, Fedra 1993, Lam and Pupp 1994).
From information technology point-of-view the
GIS is a set of functionalities that are embedded in
an environmental information system aimed to
support planning, management, decision making,
modeling, analysis, etc. Different technologies
(data formats, client-server communication, remote
procedure calls, etc.) allow embedding and linking
GIS functionalities more or less tightly with other
functionalities.

Computer programming and development of in-
formation systems advances through championing
increasingly complex subjects in machines. Pro-
gress is made possible because of well-defined and
usable foundations. Object-oriented programming
(OOP, also OO analysis, OO data modeling, etc)
came into mainstream use in early 90s but the

paradigm was developed in preceding decades.
One of the strong benefits (but also the thing that
makes it hard) of OOP is the possibility to imple-
ment abstract ideas or generalizations of facts, i.e.,
design patterns (Gamma et al 1994) or predicate
logic, in program code more explicitly that with
earlier programming paradigms. The simple fea-
tures geometry model mentioned above is a good
example of the current state-of-the art of utilizing
OO in GIS. In a geospatial environmental applica-
tion one would define a class to represent a class of
environmental objects, e.g., forest stand, and let it
inherit the geometric properties and, more impor-
tantly, usability in certain spatial operations, from
an appropriate geometric class (probably a polygon
in this case). OO data models for environmental
domain exist, perhaps most notably the Arc Hy-
drology Data Model (Davis et al 2000).

The next step forward from OOP in championing
increasingly complex subjects with machines is
through ontologies. Ontology is a philosophical
subject that studies “the nature of knowable
things” (Wikipedia.org), but also an engineering
subject that develops ontologies, i.e., data models
that are used in various areas to represent knowl-
edge about some domain. Ontological engineering
uses very similar concepts to the ones used in OOP
but it strives to being more than of just immediate
practical benefit. Ontology tools, such as the CycL
ontology language (Cycorp 2002), also attempt to
maintain a link to predicate logic. Ontologies are
increasingly also a subject of study in geographic
information science. A major impetus for this re-
search is the availability of huge collections of
geospatial data that need to be integrated in a
meaningful way (Fonseca et al. 2002). In artificial
intelligence propositional and predicate logic have
been used to develop reasoning systems (Russell
and Norvig 2003), where the model refers to a
system of causal rules written in predicate (first-
order) logic.

The goal of this study is to define and implement
an OO interface to a geospatial dataset in a GIS
that can be used as a foundation in environmental
modeling and planning tasks. The expected result
is a software framework that has the state-of-the-
art GIS functionality but offers also a simple plat-
form for developing software and applications for
the environmental domain. As materials, this study
uses free and open source (FOSS) software. The
current state-of-the-art of geospatial FOSS and its
applicability for environmental modeling and
management has been reviewed by Jolma et al.
(2006). The software stack, which offers the OO
interface is referred to as Geoinformatica (Jolma
2007).

1288

2. THE GEOINFORMATICA SOFTWARE
STACK

The software stack of Geoinformatica consists of
several software layers that usually at least par-
tially depend on lower layers. The following is a
short description of each layer, starting from the
most basic ones:

1. The system software layer, which contains
mainly the core Perl programming language, the
operating system (the free alternative is Linux),
and a software development platform. A major free
software development platform alternative is the
GNU system that consists of compilers and other
tools. An important part of the development plat-
form is the Glade user interface designer tool, that
can be used to develop GUIS and store them as
XML files.

2. The data management and serving layer, which
contains mainly a database management system
(PostgreSQL and PostGIS is the preferred free
solution for geospatial data), libraries and Perl
modules and programs for accessing data in vari-
ous formats.

3. The basic geospatial tools layer, which contains
C and C++ libraries such as Proj4 (coordinate sys-
tem conversions), GEOS (simple feature methods),
and libral (raster algebra methods).

4. The graphics abstraction and rendering layer,
which currently contains the Cairo 2D graphics
library, the GDK graphics for X, specific support
code that is built on top of these tools, and the data
and function plotting utility gnuplot.

5. The GUI toolkit layer that is provided by the
GTK+ toolkit and Gtk2, its Perl interface.

6. The geospatial data access and abstraction layer,
which contains the GDAL and OGR libraries for
raster and vector data respectively. On this layer
there is also the Geo::OGC::Geometry Perl module
that currently provides a storage for geospatial data
that adheres to the Open Source Geospatial Foun-
dation (OGC) simple feature geometry model.

7. The high-level programming (scripting) layer
for geospatial data, that is provided by the Perl
modules Geo::GDAL, Geo::Vector, and
Geo::Raster.

8. The abstract GIS layer, a geocanvas, and a layer
stack, which are the main foci of this paper.

9. The standard raster and vector geospatial data
layer implementations of the abstract GIS layer
that build on Geo::Vector, and Geo::Raster.

The last three layers (7-9) are almost pure Perl
modules. Perl is a high-level programming lan-
guage (HLL). The “high-level” implying that the
programmer need not care about technicalities
such as compilation and memory management.
Perl contains advanced built-in features such as a
regular expression engine, which is an effective
tool for, e.g., writing data input tools, and associa-
tive arrays (i.e., hashes), which are effective tools
for building and using complex data structures.
The Perl community has created a large archive of
Perl software: the Comprehensive Perl Archive
Network (CPAN), which provides extensions to
the core Perl. Perl supports OO but it does not
expect everything to be an object. Efficient Perl
bindings to C and C++ libraries can be built with
Perl’s xs system or using the HLL agnostic SWIG
(http://www.swig.org).

The GTK toolkit offers a large set of widgets (GUI
components) and a platform for writing interactive,
graphical, event driven software. GTK and
GNOME, which is a software desktop that is built
on top of GTK, have several closely related FOSS
projects. Geoinformatica uses GTK mainly
through its Perl interface, which is a separate
FOSS project.

The GDAL/OGR geospatial data access library
provides a generic API for reading, manipulating,
and creating geospatial datasets. The GDAL/OGR
library uses internally the Proj4 cartographic pro-
jection library and the GEOS library. The GEOS
library implements all the standard (as defined by
Open Geospatial Consortium) spatial predicate
functions and spatial operators. GDAL/OGR is an
Open Source Geospatial Foundation (OSGeo) pro-
ject. The GDAL/OGR library has Perl SWIG bind-
ings, which define 19 classes in the Geo::GDAL,
Geo::OGR,and Geo::OSR namespaces.

Perl, GTK, and GDAL/OGR are all multi-platform
software and they have been ported to several op-
erating systems. The Geoinformatica software
stack has been ported to Linux and Windows.

3. AN ABSTRACT GIS LAYER

The 8th (previous chapter) layer in the Geoinfor-
matica stack defines an abstract GIS layer. The
formal name of the class is Gtk2::Ex::Geo::Layer.

A layer is a fundamental paradigm in practical
geospatial software. Geospatial datasets are usually
either continuous fields or collections of objects

1289

that belong to same feature class and share their
geometric shapes and attribute schemas. When
creating a map or a geospatial visualization the
geospatial datasets are rendered on top of each
other in a certain order and using specific visual
parameters to produce an aesthetically pleasing
and/or informative visualization. Many analytical
GIS tools consider overlays of geospatial objects
or datasets. An overlay is similar to rendering
datasets on top of each other, but it is done compu-
tationally, producing new geospatial datasets and
not just visual images.

The abstract layer class defines mainly an object
that is designed to be in a GUI. The class methods
(the methods that are shared by each object of the
class) return, e.g., dialog box classes (each layer
object normally has its own dialog box instance of
each class), application context commands, and
object context menu items with associated callback
functions. The GUI defines how the application
context commands and object context menu items
are presented to the user. The object methods (the
methods that affect the individual object they are
applied to) are mostly about the visual features and
properties of the layers. Currently the root layer
class defines four main visual properties:

1. Visibility and transparency: a layer can be in-
visible or its transparency can be set in the scale of
0 (invisible) to 255 (opaque).

2. Colors: a layer has a palette type, which is one
of the palette types it supports. The list of sup-
ported palette types is a class method. The actual
coloring of the layer can be based on the value of
the selected attribute of each geometric object. The
root layer class defines a coloring dialog box,
which supports common palette types grayscale,
rainbow, color table and color bins.

3. Symbols: a layer has a symbol type, which is
one of the symbol types it supports. If a symbol
type is set for a layer object, all its objects are ren-
dered using that symbol in a location specified by
the location of the object (currently centroid). The
list of supported symbol types is a class method.
Currently the symbol size is the only property (be-
sides color of course) that can be linked to an at-
tribute value.

4. Labels: an attribute value can be rendered next
(the placement can be defined) to a location of the
object (currently centroid) using a definable font
and color.

In addition to the visual features the root layer
class API uses the concept of a geospatial feature
and of a schema. A layer is assumed to consist of

features, a subset of which may be selected. The
schema is defined because having visual features
that may be linked to attributes require it.

This set of properties lacks some common visuali-
zation tools: line and fill styles for example. It is
also notable that the properties adhere to, as is
common in GIS, to the layer as whole.

A geocanvas object contains a list of geospatial
dataset layers. When a geocanvas object gets a
request for rendering, it calls the render method of
each dataset layer in order. The parameters of the
render method specify the size and coordinates of
the canvas and provide a graphics context.

4. STANDARD LAYER CLASSES

The standard GIS layer classes are a geospatial
raster class and a geospatial vector dataset class.
These classes are implemented by joining the func-
tionality of a data access / modeling class with the
functionality of a visualization / GUI tool class.

Gtk2::Ex::Geo::Raster is a class that inherits both
(Perl supports multiple inheritance) Geo::Raster
and Gtk2::Ex::Geo::Layer. Geo::Raster is mostly a
Perl interface to the libral raster algebra library but
it can also be used to open any raster dataset with
the aid of the general GDAL raster access library
and retrieve data from it into the libral raster for
manipulation. Thus Geo::Raster brings into the
class powerful data access and raster modeling
support. The class binds the modeling functionality
with the visualization capability in a class that is a
geospatial layer and usable in a GUI. Raster com-
mands “open”, “save”, “save all”, “clip”, and “vec-
torize”, and dialog box classes for setting the prop-
erties of the raster layer object are accessible from
a GUI.

Gtk2::Ex::Geo::Vector inherits Geo::Vector and
Gtk2::Ex::Geo::Layer. Geo::Vector is a class that
represents a vector layer that is accessed with the
general OGR vector library. OGR supports most of
the common geospatial vector formats and pro-
vides a way to use the data with the GEOS simple
feature geometry method library. Thus
Geo::Vector, similarly as Geo::Raster, brings into
the class powerful data access and vector computa-
tion support. Vector commands “open”, “features”,
“vertices”, “clip”, and “rasterize”, and seven dia-
log box classes for setting the properties of the
vector layer object, are accessible from a GUI.

5. NEW LAYER CLASSES

The main focus of this study is to examine how
GIS can be extended as an modeling, simulation,

1290

and planning tool through OO. The two previous
chapters have described how state-of-the-art, with
some limitations, desktop GIS was built from
FOSS using OOP and a HLL. In this chapter we
examine how this foundation can be easily ex-
tended using OOP.

New geospatial layer classes can be defined easily
by inheriting from the root layer class or from the
standard raster or vector classes. With multiple
inheritance such class can be equipped with com-
putational capabilities using suitable other classes.
Examples of functionality that could be integrated
into the system this way are the Graph module
(class) (Orwant et al 1999), and possibly even R
spatial using the R-Perl interface
(http://www.omegahat.org/RSPerl/).

Listing 1 shows a very simple new class declara-
tion. The declaration consists or two header rows
(1-2) and five methods of which the first (lines 3-
14) is a class method, the second (lines 15-18) is
the constructor, and the three last ones (“world”,
“render”, and “menu_items”) are object methods –
although the third method (lines 19-21) is func-
tionally a class method and defines static world for
the objects of this class. The render method (lines
22-24), a method used by the geocanvas, does in
the example absolutely nothing else than retrieving
its parameters, i.e., nothing is rendered on the geo-
canvas. The fifth method provides the object con-
text menu_items for the GUI, which first retrieves
the default methods defined by the root class and
then adds a menu item, whose callback function
(lines 30-32) does also nothing.

Listing 1. A very simple new layer class declara-
tion.

1 package MyLayerClass;
2 our @ISA = qw(Gtk2::Ex::Geo::Layer);
3 sub registration {
4 my $commands = {
5 open => {
6 text => 'Test',
7 tip => 'A test command.',
8 sub => sub {
9 my(undef, $gui) = @_;
10 }
11 }
12 };
13 return {commands => $commands};
14 }
15 sub new {
16 my($class, %params) = @_;
17 return Gtk2::Ex::Geo::Layer::
 new($class, %params);
18 }
19 sub world {
20 return (0, 0, 100, 100);
21 }
22 sub render {

23 my($self, $pb, $cr, $overlay,
 $viewport) = @_;
24 }
25 sub menu_items {
26 my($self, $items) = @_;
27 $items = $self
 ->SUPER::menu_items($items);
28 $items->{'Test'} =
29 {
30 sub => sub {
31 my($self, $gui) = @{$_[1]};
32 }
33 };
34 return $items;
35 }

For this study three new layer classes were devel-
oped: (i) a feature list class, which maintains a list
of geospatial features in memory and does not as-
sume that they share a geometric shape nor
schema, (ii) a class, which acts as an interface to a
raster time series, and (iii) a simple multi-agent
simulator, which consists of a geospatial raster
class and of a feature list class.

The feature list class utilizes the
Geo::OGR::Feature class from the Perl bindings of
OGR. It is rather similar to Geo::Vector and
Gtk2::Ex::Geo::Vector but defines its own dialog
class for browsing the features and overrides some
data manipulation methods.

The raster time series class was developed mainly
for visualization purposes – although one can eas-
ily think of many interesting and useful methods
that such a class could have. The raster time series
class expects a simple text file in its constructor
from which it reads the filenames of the raster files
and associated dates. The other code of that class
defines a simple dialog box and associated code
for opening and showing or animating the re-
quested raster files.

The simple multi-agent simulator layer class code
consists mostly of callback functions that respond
to the changes in the dialog box (fig. 1) and im-
plement the model dynamics. A multi-agent simu-
lator object contains the agents as geospatial fea-
tures and the world as a raster.

1291

Figure 1. The dialog box for controlling the multi
agent simulation.

6. DISCUSSION

The state-of-the-art geospatial FOSS provides
tools with which it is quite easy to implement a
framework for spatial environmental modeling and
software. There are unquestionably also proprie-
tary alternatives to FOSS but the main benefit of
FOSS in this case was the open access to all parts
of the software and free modifiability. The down-
side of FOSS in this case was that the standard OO
GIS classes did not exist, at least for the chosen
HLL (Perl), and had to be implemented first.

Almost any part of the Geoinformatica platform is
not exceedingly powerful or novel as such, but as
the parts are put together and attention is paid to
the OO API of the geospatial dataset in the appli-
cation, the benefits become obvious. The possibil-
ity to start thinking generically about simulation
models, into which, once implemented, one can
readily import real-world data is intriguing. To be
able to connect geospatial visualizations with
modeling and use of models is also interesting.
The concept of a geospatial data layer gets new
power as it is considered from the point-of-view of
domain specialist: environmental plan could be a
layer, and models should be linked to it as methods
of the plan layer class.

Interestingly, the environmental modelers some-
times feel that GIS technology is controlled by
people who have different aims than them (van
Deursen et al 2000). In the light of this study there
really is a gap between the GIS technology and
GIS research, and environmental modelers’ needs.
The GIS research focuses on data, data modeling,
and also the research on ontologies seems to be
driven by this need. At the same time an environ-
mental modeler is mostly interested in (real world)
entities in environmental domain, which certainly
have a geospatial existence and thus can benefit
from geospatial methods, but most of all have im-

portant aspatial attributes and links that need to be
modeled as well. Thus, from the environmental
modeler’s point-of-view, object-orientation and
engineering ontologies are welcome tools, but they
need to be used to overcome the artificial barriers
created by technological development choices.

One conclusion from this study is that high-level
languages, Perl in this case, are extremely suitable
for rapid development and for developing flexible,
almost semi-intelligent software. The downside is,
if it can be called as such, that using such a lan-
guage is also a personal learning experience that
never ends. Object-oriented GUI code with call-
backs can be powerful but it is also complex. The
Geoinformatica software stack, especially the Perl
classes developed by the author, strives to be a tool
for environmental geocomputations and geospatial
applications, but it also is a research platform and
these goals are sometimes difficult to combine.
This paper presents a snapshot of the development
and there are several details in the architecture that
still need more thought. For example, what really
should be in the root layer class? Should it contain
the concepts feature and schema, especially when
it is easy to think about layers that contain features
with different schemas (as we have done in this
paper)?

In the introduction I wrote: “computer program-
ming and development of information systems
advances through championing increasingly com-
plex subjects in machines.” Certainly when there is
more experience gained from applications and
modeling projects, new abstract classes can be
devised that capture the essential elements of
these. It also seems clear that it is not possible to
think about these beforehand by theoretical con-
siderations, i.e., the research on information sys-
tem and software requires practical work with
them.

7. REFERENCES

Cycorp 2002. The Syntax of CycL.
http://www.cyc.com/cycdoc/ref/cycl-
syntax.html (accessed July 26 2007)

Davis, K.M., Whiteaker, T.L., and Maidment, D.R.
2000. Definition of the Arc Hydrology Data
Model. Paper Presented at the GIS in Water
Resources Conference, University of Texas
at Austin 23-25 February, 2000.
(http://www.crwr.utexas.edu/giswr/resource
s/library/archydro.pdf, accessed 24.7.2007)

DeMers, M. 2002. GIS modeling in raster. John
Wiley et sons.

1292

van Deursen, W., Wesseling, C., and Karssenberg,
D. 2000 How do we gain control over GIS
technology? 4th International Conference
on Integrating GIS and Environmental
Modeling (GIS/EM4): Problems, Prospects
and Research Needs. Banff, Alberta, Can-
ada, September 2 - 8, 2000.

Fedra, K. 1993. Models, GIS, and expert systems:
Integrated water resources models. In: Ap-
plication of Geographic Information Sys-
tems in Hydrology and Water Resources
Management. K. Kovar, H.P. Nachtnebel
(eds) 297-308. IAHS publication 211.

Fonseca, F.T., Egenhofer, M.J., Agouris, P., and
Câmara, G. 2002. Using Ontologies for In-
tegrated Geographic Information Systems.
Transactions in GIS 6(3).

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. 1994. Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison
Wesley.

Herring, J.R. 2006 (ed). OpenGIS® Implementa-
tion Specification for Geographic informa-
tion - Simple feature access - Part 1: Com-
mon architecture. Open Geospatial Consor-
tium Inc. OGC 06-103r3

Jolma, A., D.P. Ames, N. Horning, M. Neteler, A.
Racicot, and T. Sutton. Free and Open
Source geospatial tools for environmental
modeling and management. In A. Voinov,
editor, Proc. iEMSs 2006, Session W13,
July 9-13, 2006, Burlington, Vermont,
USA, 2006.

Jolma, A. Geoinformatica: a modeling platform
built on FOSS. In: ISESS 2007, Prague,
Czech Republic, May 22 - 25, 2007.

Lam, D. and Pupp, C. 1996. Integration of GIS,
Expert Systems, and modeling for State-of-
Environment Reporting. In: M. Goodchild
et al (eds) GIS and Environmental model-
ing: progress and research issues. GIS
World Books.

Loucks, P. and Fedra, K. 1987. Impact of changing
computer technology on hydrology and wa-
ter resource modeling. Review of Geophys-
ics 25(2).

Miller, I., Knopf, S., and Kossik, R. 2005. Linking
General-Purpose Dynamic Simulation
Models with GIS. In: Maguire et al (eds)

GIS, Spatial Analysis and Modeling. ESRI
Press.

Orwant, J., Hietaniemi, J., and Macdonald J.
(1999). Mastering algorithms with Perl.
O’Reilly and Associates.

Pullar, D. 2000. Embedding map algebra into a
simulator for environmental modeling. 4th
International Conference on Integrating
GIS and Environmental Modeling
(GIS/EM4): Problems, Prospects and Re-
search Needs. Banff, Alberta, Canada, Sep-
tember 2 - 8, 2000.

Russell, S.J. and Norvig, P. 2003. Artificial Intelli-
gence: A Modern Approach 2nd Edition.
Prentice Hall.

Tomlin, C.D. 1990. Geographic Information Sys-
tems and Cartographic Modeling. Engle-
wood Cliffs: Prentice Hall.

1293

