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Figure 1. Diagram of ants building a solution. 
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EXTENDED ABSTRACT 

Weed risk assessment (WRA) models developed 

by Pheloung et al. (1999) and Daehler et al. (2004) 

allow an informed decision prior to introducing 

potentially invasive plant species into a country. In 

this study, Ant-Miner, a data mining tool, is used 

to develop classification rules for WRA models of 

Australia, and Hawaii and the Pacific. 

Ant-Miner (Parpinelli et al., 2002), based on Ant 

Colony Optimization (ACO), is a metaheuristic 

inspired by the foraging behaviour of ant colonies. 

Its objective is to solve discrete optimisation 

problems and extract classification rules by 

simulating the behaviours of ants. For this study, 

Ant-Miner identifies a shortest pathway described 

by nodes, i.e., the 50 questions from WRA, by 

overcoming ant behaviour problems, e.g., the dead 

end, loop, returning root and evaporation of 

pheromones (Figure 1), during the search for the 

destination, e.g., a single decision described by 

either yes, no or blank to classify the class: low to 

high risk (reject) or evaluate and more information 

required in the WRA models. The purposes of 

detecting the dominant pathway are: 1) to 

understand how the decision process for plant risk 

is assessed from answering the questions in the 

current WRA model, and 2) to understand the 

WRA criteria in regards to how the decision 

process differs among regions and climates, e.g., 

Australia, and Hawaii and the Pacific. 

Ant-Miner is found to be an effective alternative 

data mining tool, since it obtained reasonably high 

classification accuracy (via 10-fold cross 

validation); in particular for the Hawaii and Pacific 

Island WRA model (81±1.24%) and for the 

Australia WRA model (71±2.26%). The extracted 

rules for Ant-Miner suggest that high risk species 

are assessed mostly under the following key 

factors: for Australia, if the species have been 

naturalized beyond their native range and 

reproduce by vegetative propagation, and for the 

Pacific, if the species have been naturalized 

beyond their native range and are congeneric, but 

not parasitic. Ant-Miner detects that the dispersal 

mechanism is an important factor for the classes 

low or evaluate for both Australia, and Hawaii and 

the Pacific WRA models. On the other hand, from 

both WRA models, the question about the plant 

type was found to be less significant for the plant 

risk assessment. The reproduction process for 

Australia and the location of the weed for Hawaii 

and the Pacific are detected to be overall important 

factors for the plant risk assessment.  

Identifying influential factors in weed risk helps 

improve cost effective biosecurity assessment by 

highlighting important and modifying or perhaps 

removing unimportant questions of the current 

WRA model to increase the overall accuracy. This 

study will encourage further investigation with 

larger data sets from different regions in future to 

add knowledge to help the WRA model 

improvement.  
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1. INTRODUCTION 

Effective strategies to mitigate and control existing 

or future invasive organisms are important for 

maintaining and protecting our healthy ecosystem. 

Entering and spreading invasive weeds (alien 

plants) can threaten the native environment, as 

they can alter the fundamental structure of the 

ecosystem by changing its composition, structure, 

and function (Yeates and Williams, 2001).  

The weed risk assessment (WRA) model 

(Pheloung et al., 1999) provides an informed 

decision prior to introducing potentially invasive 

plant species into the country. The WRA is 

established as a biosecurity tool to evaluate new 

plant introduction in Australia, and as been tested 

and modified to adapt to the unique climate and 

environment of different countries, for example, 

New Zealand (Pheloung et al., 1999) and Hawaii 

and the Pacific Islands (Daehler et al. 2004), 

referred to here as Hawaii/Pacific. The WRA 

models have 50 questions about the main attributes 

and impacts of weeds to allow assessment of their 

weediness (see the blank WRA sheet in Pheloung 

et al., 1999). Individual plant species are assessed 

by answering questions in the WRA model, 

resulting in a score from -14 (benign taxa) to 29 

(maximum weediness). The total score is then 

evaluated into three possible recommendations: 

accept the plan for import (score < 1), further 

evaluation required for the plant (score from 1-6), 

and reject the plant for import (score > 6). 

Additionally, in the WRA for Hawaii/Pacific, a 

second screening process is applied for scores 

from 1-6 to determine a further recommendation to 

either accept or reject (see detailed criteria in 

Daehler et al., 2004). Daehler et al. (2004) found 

from a comparison between the WRA and experts’ 

opinions, the second screening process for the 

WRA improves the number of correctly identified 

non-pests, i.e., non-pest classification accuracy 

with the second screening is improved to 85% 

from 66% without, as well as classifying 

additional minor pests as non-pests.  

Use of the WRA model as a decision making tool 

is beneficial, since it eases the border security 

process of plant risk assessment. However, some 

key issues are of concern to set up such a model. 

For example, the WRA process is not part of the 

legal process to prevent importing unless the plant 

is stated in the State or Federal Noxious Weed List 

(Daehler et al., 2004). Minimising biases is 

important as personal opinion on assessing 

invasiveness of weeds can vary among different 

fields of expertise (Pheloung et al., 1999). It is 

important to produce a model that describes the 

phenomena more accurately; this can perhaps be 

achieved by understanding and increasing 

knowledge about the model itself. 

In this study, Ant-Miner, a data mining tool, based 

on the Ant Colony Optimization (ACO) algorithm, 

is used to develop classification rules for WRA 

systems for Australia and Hawaii/Pacific. This 

study identifies the shortest pathway to classify 

each plant species (as either accept, evaluate or 

reject). The purpose of discovering such 

knowledge is to help plan the time and cost 

effective future WRA by identifying important or 

unimportant questions. For example, if a particular 

question is found to be important for judging high-

risk plants, then this question may be highlighted 

as important to answer. If it is impossible to 

answer because the species is new or there is a lack 

of resources for the new environment, then this 

question may be divided into a few specific 

detailed questions. On the other hand, questions 

that are found to be less important can be removed 

from the WRA systems. At the same time, if the 

question is too difficult to answer, then the plant is 

classified as evaluate or more information 

required (as answers tend to remain blank).  If 

some particular questions are more likely to be 

unanswered, it would be best to identify these and 

narrow or even remove the types of question that 

cannot be easily answered.  In fact, the studied 

data sets from Australia and Hawaii/Pacific 

contained less than 20% and 10% respectively of 

evaluate or more information required responses. 

Hence, understanding about the model may further 

increase classification accuracy and improve the 

WRA process.  

Ant-Miner (Parpinelli et al., 2002), developed 

based on Ant Colony Optimisation (ACO), is a 

metaheuristic inspired by the foraging behaviour of 

ant colonies, i.e., tracking of pheromones, with the 

objective of solving discrete optimisation 

problems, developed in 1980s by Dorigo and 

Stützle (2004). Due to its nature, ACO has been 

applied to the travelling salesman problem, and 

various other fields (sequential ordering, flow shop 

scheduling and the graph coloring problem (details 

in Dorigo and Stüzle, 2004), though its application 

in environmental science is still uncommon.  

This paper briefly describes the ACO algorithm, 

then introduces the Ant-Miner algorithm. In this 

study, Ant-Miner software (Parpinelli et al., 2002) 

is used with a slight modification. Generally, Ant-

Miner produces N solutions or paths with an 

overall classification accuracy for N-fold cross 

validation. In this study, classification accuracy is 

obtained from N-fold cross validation, e.g., N=10, 

and also, to allow an interpretation of the path, a 

single solution (path) is obtained for the whole 
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data set. Results are focused on major findings, 

observed from detecting the shortest pathway for 

the different plant risks, and will discuss how the 

WRA systems for Australia and Hawaii/Pacific 

consider the questions differently. Conclusions 

will include how knowledge discovered via a data 

mining tool helps plan the cost and time effective 

WRA model for the future.  

2. METHODS 

2.1. Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm is 

swarm intelligence that is generated by mimicking 

real ant behaviour. Ants write, read and estimate 

the amount of pheromone trail (proportional to the 

utility of using a particular arc) to build a good 

solution (Dorigo and Stützle, 2004). The stronger 

the pheromone trail, the higher its desirability. 

Ants follow a probabilistic decision biased by the 

amount of pheromone. If no pheromone trail 

exists, ants move randomly (García-Martínez and 

Herrera, 2007). A brief explanation of the Simple 

ACO (S-ACO) algorithm follows. 

Let G = (N, A) be the graph to each arc (i, j), and 

an associated variable τij, the pheromone trail. 

Assume all the arcs A have a constant amount of 

pheromone (τij =1, ∀(i, j) ∈ A) at first. Then, a 

probability P is defined for an ant k travelling from 

a node i to the next node j using τij as follows,  
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where α (∈{s, l} when s and l are short and long 

branches respectively) is a parameter defining the 

relative importance weight of the pheromone trail, 

and k
lN  is the neighbourhood of ant k in node i 

that contains all the nodes directly connected to 

node i in the graph G = (N, A), but excludes the 

predecessor of node i (the last node that the ant 

visited before moving to i) so as to avoid the ants 

returning to the node they visited immediately 

before node i. When k
lN is empty (a dead end, an 

example is seen in Figure 1-A), node i’s 

predecessor is included into k
lN . During this 

process, ants receive pheromone several times by 

going back and forth; consequently, this can lead 

to loops (seen in Figure 1-B). Loop elimination is 

carried out by an iterative scanning process; the 

path from the destination node back to a given 

node is scanned.  If another instance of the node is 

reached along the way, the subpath from this 

instance back to the original instance of the node is 

a loop, which can be eliminated. 

 

Let a change of amount of pheromone be ∆τk
, 

deposited by the k
th

 ant on arc (i, j) that is visited 

during their return travel (Figure 1-C),  

.k

ijij τττ ∆+←  (2) 

When an ant deposits pheromone earlier than one 

travelling a longer path, it deposits more 

pheromone on the shorter path. At the same time 

as updating the pheromone trail, pheromone trail 

evaporation (Figure 1-D) is considered, to avoid all 

ants moving toward a suboptimal path by 

converging; losing pheromone intensity favours 

the exploration of different paths. Let ρ be a 

parameter, where ρ ∈ (0, 1], then when ant k 

moves between nodes, the pheromone trails are 

evaporated as  

.) ,(        ,)1( Ajiijij ∈∀−← τρτ  (3) 

A complete cycle of an iteration of ACO involves 

pheromone evaporation and deposition, and ant 

movement.  

2.2. Ant-Miner 

The following section briefly introduces the main 

theoretical modifications of Ant-Miner from the 

ACO algorithm. Ant-Miner is similar to the 

decision tree algorithm, such as C4.5 (Quinlan, 

1993) that discovers the classification rules by 

following a divide-and-conquer approach: 

IF < term1 and term2 and ...> THEN <class> 

However, the heuristic functions for decision tree 

algorithms and Ant-Miner differ in how they 

consider the entropy; for the former they are 

computed for an attribute as a whole, but the latter 

computes them for an attribute-value pair only 

(Parpinelli et al. 2002). 

The procedure of discovering classification rules is 

as follows.  Firstly, an ant starts with an empty rule 

and adds one term at a time to its current partial 

rule until one of the two following conditions are 

satisfied:  

1) Adding any term to the rule would result 

in it covering less than a user-specified 

minimum number of cases.  
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2) All attributes have already been used by 

the ant to create the rule antecedent.  

Secondly, the rule can be pruned to eliminate 

irrelevant terms and thirdly, the amount of the 

pheromone is increased in the trail followed by the 

ant and decreased elsewhere (evaporation). Then, 

newly updated pheromone guides other ants to 

construct the rule until one of the following is 

satisfied: 

1) Number of constructed rules is equal to or 

greater than the user-specified number of 

ants. 

2) When the exact same rule has been 

created by a user-specified number of 

successive ants. 

Detailed algorithms are described in Parpinelli et 

al. (2002). To operate a data mining algorithm, 

Ant-Miner modifies the Pij function (originally 

equation 1 from ACO) which allows the current 

ant to iteratively add one term at a time to its 

current partial rule. Let ηij be a value of the 

heuristic function to estimate the quality or precise 

value of the entropy associated with the arc (i, j) to 

improve the predictive accuracy of the rule in 

Equation 4, where I is the total number of 

attributes, Ji is the number of values in the domain 

of the i
th

 attributes and xi is set to 1 if the attribute 

Ai was not yet used by the current ant or to 0, 

otherwise. 
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Pheromone updating (equation 2 for the ACO) is 

calculated from: 
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which is inversely proportional to the number of 

values of all attributes. Then, the pheromone 

update can be carried out by increasing and 

decreasing for arcs that are used or not used, 

respectively (details in Parpinelli et al. (2002) and 

the equation 3 from the ACO). Ant-Miner 

parameters are defined by the experiments of 

running a few different parameter settings, and the 

best results, e.g., higher classification accuracy, are 

introduced in the following sections. Note that all 

classification rules are pruned.  

2.3. Data set and Ant-Miner  

The data set is taken from the website of the 

Institute of Pacific Islands Forestry, Pacific Island 

Ecosystems at Risk (PIER, 2007); 

http://www.hear.org. The data source shows two 

types of risk assessments on WRA models; risk 

assessments for species that are listed on PIER, 

and not listed on PIER. Both sets of data have the 

score for a single plant species that is assessed by 

the Australia and Hawaii/Pacific WRA models; 

163 and 555 plants are assessed by the Australia 

and Hawaii/Pacific models respectively. 

The original WRA questionnaire blank sheets are 

not described in this paper, but are accessible from 

Pheloung et al. (1999) for Australia and Daehler et 

al. (2004) for Hawaii/Pacific, or the data source 

website. Both WRA models have 8 sections and 

are divided into several questions, and a total of 50 

questions. Some questions, e.g., 4.10 from WRA, 

are different between the two models, as the 

Hawaii/Pacific model was adjusted from the 

Australian model.  

As previously discussed in the introduction 

section, the total score for each plant is categorised 

as a class. The Australia model has four classes; 

reject (score > 6), evaluate (1 to 6), evaluation or 

more information (score > 4, but majority of 

questions unanswered) and accept (< 1). The 

Hawaii/Pacific model has three classes; high risk 

(> 6), low evaluate (1-6) and accept (< 1). Note 

Table 1. The original proportion of the class and classification accuracy using the Ant-Miner for the WRA 

models for Australia, and Hawaii and Pacific. 

Class Reject Accept Evaluate/More information

Australia 131 (80%) 3 (1%)
20 (13%) for evaluate                             

9 (6%) for more information

Class High risk Low risk Evaluate

Hawaii and Pacific 176 (32%) 321 (58%) 58 (10%)

Ant-Miner Accuracy rate on test set Rules number Conditions number

Australia 71.02%  +/- 2.26% 6.3  +/- 0.15 13.9  +/- 0.62

Hawaii and Pacific 80.15%  +/- 1.24% 7.6  +/- 0.16 21.7  +/- 1.58  
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that the Hawaii/Pacific model has a second 

screening process for the class evaluate, but the 

second screening process is not used and classified 

as all evaluate. Table 1 shows the proportion of 

each class. The Australian model classified most of 

the plant species as reject (80%) compared with 

accept (3%), but the Hawaii/Pacific model 

classified most as low risk (58%), followed by 

high risk (32%). Both models contained about 

10% of the plant species that requires further 

evaluation or more information.  

2.4. Ant-Miner program 

The Ant-Miner program, developed by Parpinelli 

et al. (2004) detects classification rule using 10-

fold cross validation, which divides the data set 

into ten mutually exclusive partitions, with nine 

partitions used to extract the rule and the rest used 

to test the rule, providing the classification 

accuracy. In this study, the Australia and 

Hawaii/Pacific WRA models are analysed 

separately using 10-fold cross validation with four 

different parameter settings; three parameters (min 

cases per rule = 10, max uncovered cases = 10, 

and no rules converg = 10) are kept the same, but 

the number of ants was changed to 50 and 100, and 

applied to two numbers of iterations, 25 and 100 

respectively. The parameter settings that provided 

the best-represented results, i.e., the highest 

classification accuracy, are used to obtain the 

classification accuracy.  

While the original Ant-Miner programme 

(Parpinelli et al. 2004) was only the 10-fold cross 

validation method that provides individual 

classification rules for each of the 10 partitions, in 

this study, the programme was modified to provide 

a single classification rule, based on the entire data 

set. This classification rule was then used to 

understand the structure of the shortest pathway.  

3. RESULTS AND DISCUSSIONS 

Table 1 shows the classification accuracy obtained 

from the best parameter setting; the number of ants 
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Figure 2. The classification systems for the Australia, and Hawaii/Pacific WRA models obtained by Ant-

Miner. Note that the arrows are one way and line styles indicate pathways to classes.  
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and iterations are 100. Ant-Miner successfully 

obtained reasonably high classification accuracy, 

in particularly, the Hawaii/Pacific model data set is 

found to be more suitable for Ant-Miner, as the 

higher classification accuracy is detected for the 

Hawaii/Pacific model (80.15%) than the Australia 

model (71%).  

Figure 2 shows for both Australia and 

Hawaii/Pacific the best classification rule 

demonstration, identifying the shortest pathway or 

important attributes (questions) to lead the 

different plant risks.  

3.1. Australia WRA system 

Figure 2-A shows that three common questions 

were detected among classes; if reproduction by 

self-fertilisation (6.04) is unknown, this connects 

to the classes of reject and evaluation, if the 

vegetative propagation reproduction (6.06) is true 

(yes) and unknown, this connects to reject and 

evaluation respectively, and if the minimum 

generative time for reproduction is one year (6.07) 

and unknown, this connects reject and more 

information required, respectively.  Besides the 

above, three pathways were detected for the high 

risk plant (reject), when the plant is beyond native 

(3.01), there is no evidence of substantial 

reproductive failure in the native habitat (6.01) and 

unknown host for recognised pests and pathogens 

(4.06).  

The pathways for more information required were 

created by all questions – weedy race (1.03), 

minimum time (6.07), wind disperse (7.04) and 

herbicide control (8.03) – which are all 

unanswered (indicated by a question mark in 

Figure 2); this is a reasonable finding, as more 

unanswered questions lead to requiring more 

information about the plant. This may suggests 

that these questions may need to be improved by 

adding more specific questions to help in 

answering them. If these questions are in fact 

difficult to answer, perhaps even removing them 

may help the overall analysis, though note that it is 

important to keep the question about the minimum 

reproduction time (6.07) because it was found to 

be important for judging the class.  

Interestingly, a common decision making process 

for all classes was detected to involve the 

reproduction questions (section 6 in the WRA). 

This suggests that improving the reproduction 

question for the plant species by setting up more 

specific and detailed questions may increase 

sensitivity and help overall judgement. On the 

other hand, questions identified as related to the 

class of more information may be removed or have 

aspects changed to ease answering further, which 

may help creating the cost and time consuming 

WRA analysis for the Australian WRA system.   

3.2. Hawaii/Pacific WRA system. 

Figure 2-B shows independent structures that the 

questions do not overlap between reject (left side 

of Figure 2-B) and low risk and evaluation (right 

side of Figure 2-B). This suggests that the Hawaii 

WRA system has a strong structure to make a 

decision for high risk plants, which are assessed 

particularly (as used twice to form two pathways) 

by whether the plant is beyond native or not (3.01). 

If the plant is introduced outside its native range 

(2.05), and is beyond native (3.01) and tolerates or 

benefits from mutilation, cultivation or fire then 

the plant species is rejected. However, if the plant 

is not beyond native, but is recognised as 

congeneric weed (3.05) and parasitic (4.03), then 

the plant species is rejected. Also, if the plant is 

not domesticated (1.01), then the plan species is 

rejected. The low risk and evaluation classes are 

commonly assessed, when the weed is not found 

from agriculture, horticulture or forestry (3.03).  

3.3. Assessment trends of the WRA 

between different regions and climate. 

The Ant-Miner classification summary (Figure 3) 

shows that question 5, plant type, was not selected 

to construct any shortest decision making pathway 

for both the Australia and Hawaii/Pacific WRA 

The WRA questions Hawaii and Pacific Islands

Domestication/cultivation 1 03 1 01

Climate and distribution 2 04 2 05

Weed elsewhere 3 01 3 01, 01, 03, 04, 05

Undesirable traits 4 03, 06 4 03, 05, 07

Plant type 5 5

Reproduction 6 01, 03, 04, 04, 06, 06,  07, 07 6 06

Dispersal mechanisms 7 01, 04, 05 7 01, 02, 03, 06

Persistence attributes 8 03 8 03, 04

Australia

Section numbers from the WRA model

 
 

Figure 3. The key WRA questions followed by a section number detected by Ant-Miner as nodes. 

Numbers in bold indicate classification for reject or high risk plant species. 
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systems to classify for plant risks. It suggests that 

the plant type may not be particularly significant 

for assessing the plan risk. A significant difference 

in selecting important factors was detected 

between the Australia and Hawaii/Pacific WRA 

systems. The Australian system tends to consider 

the reproduction of the plant species (question 6) 

as the most important factor, but this was not 

important for the Hawaii/Pacific system. The 

Hawaii/Pacific system, on the other hand, selects 

the place of weeds (question 3), undesirable traits 

(question 3) and the mechanisms of dispersal 

(question 7) as important for judging the plant 

species in regard to their risks. While the high 

plant risk classification pathway (shown in bold in 

Figure 3) tends to be assessed by weed 

reproduction method for Australia and weed 

location for the Hawaii/Pacific model, the 

classifications lower than high risk plant (non bold 

in Figure 3) such as evaluation, low risk or more 

information required tend to be assessed 

commonly by the weed dispersal mechanisms 

(question 7).  

This investigation suggests that the fundamental 

structures of the WRA systems between different 

climates and regions differ. In order to improve the 

WRA, reproduction process, reproduction and 

dispersal mechanisms and weed location are 

specifically important questions. If these questions 

can be more specific and allow the assessment to 

be more accurate, the overall classification may be 

improved. 

4. CONCLUSION 

Ant-Miner data mining tool successfully identified 

the shortest pathway that is the most dominant and 

important pathway, to classify different plant risks. 

Examining different WRA systems provides ideas 

on how regions with different climates have 

different risk. Generally, for assessing the high risk 

plant species, the Australian and Hawaii/Pacific 

systems selected the reproduction process and the 

location of the weed as important factors 

respectively. For evaluation or low risk plant 

species, both models selected the dispersal 

mechanisms are important. Neither model selected 

the plant type as an important factor for assessing 

the plant risks. This may suggest that this question 

may require modification to be more specific or 

even may be removed, because it did not help the 

assessment as compared with other questions.  

Identifying influential factors from the model helps 

construction of cost effective biosecurity 

strategies. It can target which questions are 

required to be more specific in order to help 

construct accurate models. This study shows Ant-

Miner can be a useful data mining tool, as it 

successfully provided important pathways for 

assessing different risks. At this stage, this 

investigation was not for constructing new risk-

models, instead it was to increase knowledge about 

the existing model. In the future, many more 

different plant species and data points taken from 

different regions will be investigated to help 

improve the WRA model. 
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