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EXTENDED ABSTRACT 

There are a number of large scale computer 
simulation models being used in Australia to 
support the development and implementation of 
salinity management strategies in the River Murray 
system. BIGMOD is one such model used by the 
Murray Darling Basin Commission (MDBC) to 
model the major processes of flow, salinity, 
extractions and diversions.  

The BIGMOD model was originally calibrated 
against historical flow and salinity data from 
Dartmouth Dam to upstream of Lake Alexandrina 
in South Australia using traditional parameter 
estimation methods. The calibrated model has been 
used extensively to provide salinity predictions to 
Murray Darling basin managers who have been 
making important salinity management decisions 
based on the predictions. The accuracy and 
reliability of the model predictions play a vital part 
in the success of the salinity management strategy. 
However, like predictions obtained with any other 
complex and large scale hydrological and water 
quality model, the BIGMOD model predictions 
contain uncertainty. Traditional uncertainty 
analysis approaches can be used successfully to 
quantify parameter uncertainty and prediction 
uncertainty in simple hydrological models. 
However, these methods cannot be used with large 
integrated models, such as BIGMOD, as 
computational requirements are too high. 

This study focuses on estimating the confidence 
intervals for BIGMOD salinity predictions by 
quantifying the uncertainty associated with 
significant parameters in the BIGMOD model 
using the recently developed Shuffled Complex 
Evolution Metropolis (SCEM-UA) algorithm. The 
SCEM –UA algorithm is an effective and efficient 
evolutionary Markov Chain Monte Carlo (MCMC) 
sampler, which combines the search capabilities of 

the Shuffled Complex Evolution (SCE-UA) 
algorithm with the Metropolis algorithm.        

Part of the South Australian reach of the River 
Murray system, from Lock 5 to Lock 1, was 
modelled in this study.  Prior knowledge of the 
modelling processes under investigation was used 
to select the significant parameters whose 
uncertainty was assessed using the SCEM-UA 
algorithm. The BIGMOD model calibration was 
carried out in 2 stages. First, the flow was 
calibrated against flow data upstream of Lock 1. 
Then salinity was calibrated against salinity data at 
Morgan. Uncertainty associated with 2 significant 
parameters, travel time and dead storage, was 
estimated in each reach during the SCEM-UA 
BIGMOD model calibration. Confidence intervals 
for salinity predictions at Morgan and flow 
upstream of Lock 1 were estimated.  

The results indicate a high level of uncertainty for 
each of the 16 parameters modeled. However, this 
variation is likely to be due to the fact that 
measured flow and salinity data are only available 
at one location each, and that different 
combinations of parameter values of the model can 
achieve the same output values. The high degree of 
correlation between parameters was confirmed by 
the fact that the confidence bounds on the 
predictions obtained were quite narrow, despite the 
high degree of uncertainty associated with 
individual parameters.  

In addition to providing insight into the model 
parameters and confidence intervals for the model 
predictions, the SCEM-UA method produced 
slightly better results when compared with the 
predictions obtained with traditional model 
calibration. This highlights the ability of 
automated calibration methods to determine good 
model parameter vectors without any a priori 
knowledge of the system being modelled.  
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1. INTRODUCTION 

Over the last 2 decades, large scale computer 
simulation models have become extremely useful 
tools for managing large river basins. BIGMOD 
(Close 1996) is one such model used by the 
Murray Darling Basin Commission (MDBC) to 
model and predict major processes such as flow, 
salinity, extractions and diversions in the River 
Murray system. The model has been used 
extensively to provide salinity predictions to 
Murray Darling basin managers who have been 
making important salinity management decisions 
based on the predictions. The accuracy and 
reliability of the model predictions play a vital part 
in the success of the development and 
implementation of salinity management strategies 
in the River Murray system. However, like 
predictions obtained with any other complex and 
large scale hydrological and water quality model, 
the BIGMOD model predictions contain 
uncertainty. This may arise from various sources. 
For example, the BIGMOD model itself can 
contain uncertainties due to the approximations in 
the system representations; the available data 
defining the input conditions and calibration 
events likely contain measurement errors and 
calibrated parameters can have uncertainties. 
Traditional uncertainty analysis approaches can be 
used successfully to quantify parameter 
uncertainty and prediction uncertainty in simple 
hydrological models. However, these methods 
cannot be used with large integrated model such as 
BIGMOD, as computational requirements are too 
high.   

Unlike simple hydrological models, the BIGMOD 
model simulates a number of complex processes. 
Consequently, the number of parameters involved 
in representing these processes is considerably 
higher when compared with a simple hydrological 
model. Moreover, BIGMOD simulates the River 
Murray by dividing the river system into a number 
of river reaches. Each of these reaches can contain 
up to 50 parameters, which have to be estimated 
during model calibration. The BIGMOD model 
contains more than 200 river reaches, making 
traditional calibration approaches extremely labour 
intensive. Furthermore, the success of traditional 
parameter estimation techniques is also strongly 
dependent on the experience of the modeller.  

Automatic methods for model calibration have 
been developed to overcome the major issues 
associated with manual model calibration. Such 
methods are easier to implement and take 
advantage of the speed and power of computers to 
estimate parameters and have therefore become 
increasingly popular. However, most of these 

methods encounter difficulties when trying to find 
global parameter estimates (Duen et al. 1992, 
Sorooshian et al. 1993). The shuffled complex 
evolution (SCE-UA) global optimisation algorithm 
proposed by Duen et al. (1992) is generally 
considered to be the most efficient and effective 
global parameter optimisation algorithm used in 
hydrological model calibration.  However, 
automatic model calibration methods are aimed at 
finding a single best set of parameter values for a 
given system and do not take account of parameter 
uncertainty.    

Uncertainty analysis techniques, such as evaluation 
of the likelihood ratio (Beven and Binley 1992), 
Markov Chain Monte Carlo (MCMC) algorithms 
(Kuczera and Parent 1998) and bootstrap 
techniques have been developed and successfully 
applied to hydrological models to estimate 
parameter uncertainties. Among them, MCMC 
algorithms have become increasingly popular for 
estimating the posterior probability distribution of 
parameters in hydrological models, as they are able 
to successfully manage nonlinear, complex 
models. However, MCMC methods require a 
priori definition of a sampling distribution. The 
choice of the sampling distribution determines the 
explorative capabilities of the Markov Chain 
sampler and its rate of convergence. A poor choice 
of the proposal distribution will result in slow 
convergence of the Markov Chain and an inability 
to recognise when convergence to a limiting 
distribution has been achieved (Vrugt et al. 2003).   

An adaptive MCMC sampler entitled the Shuffled 
Complex Evolution Metropolis algorithm (SCEM-
UA) was proposed by Vrugt et al. (2003) to 
improve the search efficiency of the MCMC 
sampler. It operates by merging the strengths of 
the Metropolis (Metropolis et al. 1953) and SCE-
UA algorithms (Duan et al. 1992). The SCEM-UA 
algorithm is a MCMC sampler that provides an 
estimate of the most likely set of parameter values 
and underlying posterior distribution within a 
single optimisation run. Previous studies suggested 
that the adaptive capabilities of the SCEM-UA 
algorithm can significantly reduce the number of 
model simulations required to estimate the 
posterior distribution of the parameters when 
compared with traditional Metropolis-Hastings 
samplers (Vrugt et al. 2006, Vrugt et al. 2003). 

This study focuses on estimating the confidence 
intervals for BIGMOD salinity predictions by 
quantifying the uncertainty associated with 
significant parameters in the BIGMOD model 
using the SCEM-UA algorithm. The SCEM-UA 
algorithm estimated parameter values are 
compared with the parameter values of the MDBC 
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calibrated model. Modelled salinity predictions at 
Morgan, as well as flow predictions upstream of 
Lock 1, are also compared with observed salinity 
values and flow values at Morgan and upstream of 
Lock 1, respectively. Furthermore, the predictions 
are compared with MBDC calibrated model 
predictions. 

2. METHODOLOGY 

In this study, the BIGMOD modelling suite was 
combined with SCEM-UA to quantify the 
uncertainties associated with significant model 
parameters and to assess the confidence intervals 
for model predictions.  

2.1. BIGMOD Model Calibration 

The BIGMOD model simulates the River Murray 
system by dividing the river into a number of 
reaches. In each river reach, major processes, such 
as flow, salinity, losses, extractions and diversions, 
are modelled using different techniques. For 
example, flow is modelled by using hydrologic 
flow routing techniques and salinity is routed by 
tracking parcels of water called ‘markers’. The 
model was originally calibrated against the 
historical data from Dartmouth Dam to upstream 
of Lake Alexandrina in South Australia in 2 stages 
(MBDC 2002). First, the flow routing and 
transmission loss calibration was carried out by 
setting the flow at an upstream gauging station in 
the model to the recorded data and routing the flow 
down to the next flow gauging station. The 
parameters estimated during this calibration 
process include the relationship between flow and 
travel time and the flow versus loss relationship.       
The salinity routing was calibrated next using the 
estimated parameter values from the flow 
calibration. The salinity calibration was 
accomplished by following a similar approach to 
the flow calibration.  As part of the salinity 
calibration, salinity at an upstream gauging station 
was set to measured data and then routed to the 
next available salinity gauging station. The dead 
storage in each reach was calibrated during this 
process.  

2.2. Shuffled Complex Evolution 
Metropolis Algorithm 

The SCEM-UA algorithm is an adaptive MCMC 
sampler, which generates multiple sequences of set 
of parameter values which converge to the 
stationary posterior distribution for a sufficiently 
large number of simulations. The basic steps in the 
SCEM-UA algorithm can be summarised as 
follows.  First, an initial population of points that 
is distributed randomly throughout the feasible 

parameter space is generated. For each point, the 
posterior density is computed. Next, the population 
of parameter values is partitioned into a number of 
complexes. In each complex, a parallel sequence is 
launched from the point that exhibits the highest 
posterior density. A new candidate point in each 
sequence is generated using a multivariate normal 
distribution. The new candidate point is added to 
the current sequence by testing the Metropolis-
annealing (Metropolis et al, 1953) criterion. 
Finally, the new candidate point is shuffled into 
the original population of complexes. The 
evolution and shuffling procedures are repeated 
until each of the parameters converges to a 
stationary posterior target distribution. A detailed 
description of the SCEM-UA method can be found 
at Vrugt et al. (2003).  

3. CASE STUDY 

Part of the South Australian reach of the River 
Murray system, from Lock 5 to Lock 1, was 
modelled in this study (Figure 1). This river 
section was divided into 9 reaches in the BIGMOD 
model, details of which are given in Table 1. The 
total number of reaches modelled was 8, as reach 
number 162 was not modelled in this study. 

 

 Figure 1. Location map of the modelled part of the 
River Murray system 

The significant parameters to be estimated during 
the SCEM-UA calibration process were identified 
as the flow travel times and dead storages in each 
reach. The flow travel time is modelled within 
BIGMOD as a relationship with flow and was also 
used to estimate the salinity travel time. For each 
reach, MDBC estimated 10 travel time values 
corresponding to the different flow levels, as 
shown in Table 1. Instead of modelling 10 travel 
times separately for each reach, the travel times 
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Table 1. Reach descriptions and MBDC estimated parameter values for dead storages and travel times 

 

 

 

 

 

 

were calibrated in this study by multiplying the 
MDBC calibrated values by a factor.   

Consequently, a single multiplication factor was 
optimised for each reach by assuming that the 
MBDC calibrated flow-travel time relationship 
shapes were accurate. Dead storage corresponds to 
the water in deep holes and in weir pools which is 
present even at very low flows, and is the most 
significant parameter estimated during the salinity 
calibration. 

Observed data from May 1983 to May 1990 were 
used in this study. The first 2 years of data were 
used to warm up the model and data from May 
1985 to May 1990 were used for model calibration 
and uncertainty estimation.  

In the SCEM-UA model, the sample size was set 
to 1,000 and the number of complexes was set to 
10. These values were obtained by trial and error 
and are similar in order of magnitude to values 
suggested in previous studies. In the preliminary 
studies, the BIGMOD model parameters 
converged to a minimum after about 15,000 model 
evaluations. Therefore, the maximum number of 
simulations was set to 30,000, as this enabled the 
final 10,000 samples to be used to obtain the 
uncertainty estimates. 

The BIGMOD model calibration was conducted in 
2 stages. First, the travel times for each reach were 
calibrated against the flow upstream of Lock 1. 
The average travel time values for each reach were 
computed by using the 1,000 travel time values 
obtained from the final sample. These calibrated 
values were then used to calibrate against the 
salinity data. The dead storages were estimated by 
calibrating the modelled salinity values against 
measured salinity at Morgan. Dead storage values 
were also estimated by using a multiplication 
factor to increase the computational efficiency of 
the calibration process. The multiplication factors 
were allowed to vary between 0.1 to 10 to give 
enough search space to find the optimum values.  

4. RESULTS AND DISCUSSION 

This section discussed the preliminary results 
obtained by analysing the final parameter sample, 
which contained 1,000 probable values for each 
parameter.   

The posterior distributions of the travel time 
multiplication factors were estimated using the 
final 1,000 samples and are shown in Figure 2 for 
4 reaches. For some reaches, most of the travel 
time multiplication factors were less than 1.0, 
suggesting that the travel time values were 
overestimated as part of the MDBC calibration 
process. For example, for reach 112, around 75% 
of the estimated values were less than 1.0. As a 
result, approximately 75% of the travel times 
computed by the SCEM-UA algorithm were 
smaller than those estimated with the traditional 
calibration approach.  The mean and median travel 
time values estimated using SCEM-UA were less 
than the MDBC estimated values, as shown in 
Figure 3.  
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Figure 2. Posterior distribution of travel time 
multiplication factors for reach No. 112, 165, 119 

and 164 

 
0 5,000 10,000 20,000 30,000 50,000 70,000 100,000 140,000 300,000

112 Lock 5 - Berri 22415 0.22 0.76 0.76 0.90 1.12 2.28 1.94 2.38 1.94 1.94

162 Berri - Lock 4 6085 0.06 0.19 0.19 0.22 0.28 0.57 0.48 0.60 0.48 0.48

116 Lake Bonney 0 0 0 0 0 0 0 0 0 0 0

117 Lock 4 -  Lock 3 45000 0.25 0.80 0.80 0.90 1.60 3.95 6.00 4.60 2.50 2.50

118 Lock 3 - Woolpunda 7359 0.05 0.12 0.12 0.12 0.12 0.38 0.74 0.44 0.32 0.32

163 Woolpunda - Waikerie 13101 0.06 0.17 0.17 0.17 0.16 0.53 1.01 0.61 0.44 0.44

164 Waikerie - Lock 2 7540 0.05 0.13 0.13 0.13 0.12 0.39 0.76 0.45 0.33 0.33

119 Lock 2 - Morgan 28075 0.17 0.55 0.55 0.54 0.70 0.75 1.55 1.55 1.55 1.55

165 Morgan - Lock 1 28925 0.15 0.48 0.48 0.46 0.60 0.65 1.35 1.35 1.35 1.35

Travel time (days)
Reach No        Description

Dead  
storage in 
reach (ML)
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Table 2. Comparison of SCEM-UA calibrated dead storages and MDBC calibrated dead storages (in ML) 

 

 

 

 

 

On the other hand, for some reaches, such as reach 
No. 165, most of the estimated values were 
scattered in the vicinity of 1.0. Consequently, the 
mean and median travel time values were similar 
to the MDBC estimated values (Figure 3). 
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Figure 3. Comparison of MDBC estimated travel 
times with SECM-UA calibrated travel times for 

reach no. 165 and 112.  

The SCEM-UA parameter optimisation approach 
resulted in significantly higher travel times for 
some reaches. For instance, for reach No. 164, 
only about 10% of the travel time multiplication 
factors were less than 1.0 and more than 50% were 
greater than 4. In such cases, the SCEM-UA 
estimated travel times were significantly greater 
than the MDBC estimated travel times.  

The SCEM-UA estimated dead storage 
multiplication factors followed a similar variation 
to the travel time multiplication factor estimates 
(Figure 2 and Figure 4).  

For some reaches, the SCEM-UA estimated dead 
storages were strongly related to the MDBC 
estimated values. In particular, for reach number 
162, the mean and median dead storages estimated 
were of the same order of magnitude as the MDBC 
estimated dead storages, as shown in Table 2.  For 
some reaches, the SCEM-UA estimated values 
were significantly lower than the MBDC estimated 
values. For instance, for reach number 119, the 
MBDC estimated a dead storage of 28,075 ML. 
However, most of the SCEM-UA calibrated values 
were in the range of 6,000 ML (Figure 4), even 
after allowing dead storages to vary from 2,807.5 
ML to 280,750 ML during optimisation. Reach no. 
117 also indicated a similar variation (Table 2).  
On the other hand, for some reaches, the SCEM-
UA approach resulted in significantly higher dead 
storages (eg. reach number 112 and 165).  
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Figure 4. Posterior distribution of dead storage 
multiplication factors for reach No. 112,165, 119 

and 164   

112 162 117 118 163 164 119 165

SCEM-UA (mean) 68595 6963 9574 4775 5403 4577 6025 152247

SECM-UA (median) 66791 6366 8748 4142 4906 4055 5818 151528

MDBC 22415 6085 45000 7359 13101 7540 28075 28925

Reach No.
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Uncertainties in model predictions were assessed 
by conducting 1,000 BIGMOD simulations with 
the parameter values from the final sample.  The 
salinity at Morgan, as well as flow upstream of 
Lock 1, were extracted from the BIGMOD model 
outputs and further analysed and compared with 
the MDBC calibrated model outputs.  

The results obtained indicate that the salinity 
values computed with the SCEM-UA algorithm 
estimated parameters were similar to the MDBC 
predictions. The 95% confidence intervals for the 
salinity time series (Figure 5) were relatively 
narrow, even though they were obtained using 16 
parameters, each of which had a great deal of 
uncertainty associated with it. This suggests that 
the parameters obtained using the SCEM-UA 
algorithm are highly correlated. This makes sense 
from a physical perspective and provides further 
insight into the wide range of parameter variations 
obtained as part of the calibration process. As flow 
and salinity data are only available at one location 
each, and different parameters for travel time and 
dead storage need to be found for a number of 
reaches, there is a large number of combinations of 
parameters (e.g. small travel time in reach one 
followed by a large travel time in reach two and 
vice versa etc.) that are able to match the measured 
flow and salinity data. This highlights the 
importance of incorporating as much a priori 
system knowledge into the automated calibration 
process as possible, so that the most physically 
plausible parameter vectors can be selected from 
those obtained as part of the SCEM-UA analysis. 
In other words, even though there are many 
parameter combinations that are able to reproduce 
the measured data, not all of them would make 
physical sense. As the algorithm only considers the 
impact of the combination of parameters on the 
predictions at a single measuring point, the relative 
values of parameters in individual reaches are not 
necessarily physically plausible.  

The plots in Figure 5 also indicate that the 
measured data do not fall within the confidence 
bounds of the predictions. This suggests that not 
all sources of uncertainty have been included in the 
analysis. Additional sources of uncertainty could 
include the uncertainty of other model parameters 
or the structure of the model itself (e.g. not all of 
the processes affecting salinity are described 
adequately in the model). 

The prediction accuracy of the models calibrated 
by MDBC and using the SCEM-UA algorithm was 
compared by calculating the root mean square 
error and correlation coefficient between observed 
and modelled values. For the SCEM-UA approach, 
the mean of the 1,000-modelled values was used as 

the predicted value. The results indicate that the 
SCEM-UA model calibration method is slightly 
better than the conventional BIGMOD model 
calibration method, for both salinity and flow 
predictions (Table 3).   

Table 3. Error indicators for MDBC calibrated 
salinity and flow values and SCEM-UA calibrated 

salinity and flow values. (MOS= Salinity at 
Morgan, L1UF= Flow at up stream of Lock 1, 
RMSEs in EC units for salinity and in ML for 

flow)  

RMSE r

MDBC 125 0.86

SCEM-UA 120 0.87

MDBC 8314 0.92

SCEM-UA 7388 0.95

MOS

LIUF
 

5. CONCLUSION 

In this study, the recently developed SCEM-UA 
algorithm was applied to the large scale simulation 
model BIGMOD, which models flow and salinity 
in the River Murray, Australia, to quantify 
parameter and output uncertainty.  The results 
indicate a high level of uncertainty for each of the 
16 parameters modeled. However, this variation is 
likely to be due to the fact that measured flow and 
salinity data are only available at one location 
each, and that different combinations of model 
parameters can achieve the same model output. 
The high degree of correlation between parameters 
was confirmed by the fact that the confidence 
bounds on the predictions obtained were quite 
narrow, despite the high degree of uncertainty 
associated with individual parameters. This 
highlights the importance of incorporating as much 
a priori knowledge into the calibration process as 
possible, as not all parameter combinations that 
result in a good match between modeled and 
predicted data make physical sense.  

The results obtained also indicate that not all 
measured salinity data fall between the modeled 
confidence bounds. This suggests that not all 
sources of uncertainty were included in the 
analysis. 

In addition to providing insight into the model 
parameters and confidence intervals for the model 
predictions, the SCEM-UA method produced 
slightly better results when compared with the 
predictions obtained with traditional model 
calibration. This highlights the ability of 
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automated calibration methods to determine good 
set of model parameter values without any a priori 
knowledge of the system being modeled. 
However, as pointed out above, such knowledge is 
required to choose the physically most plausible 
set of parameter values generated. 
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Figure 5. The 95% prediction limits for SCEM-UA BIGMOD model predictions and BIGMOD predictions 
obtained with MBDC calibrated parameters 
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