
A Parallel Shuffled Complex Evolution Model 
Calibrating Algorithm to Reduce Computational Time  

Muttil, N. 1,*, S.Y. Liong 2, O. Nesterov 2 

1 School of Architectural, Civil and Mechanical Engineering and Institute for Sustainability & Innovation, 
Victoria University, P.O. Box 14428, Melbourne 8001, Vic., Australia 

2 Tropical Marine Science Institute (TMSI), National University of Singapore, Singapore 
* Formerly, Research Fellow at TMSI, National University of Singapore, Singapore 

Email: nitin.muttil@vu.edu.au 

Keywords: Model calibration, hydrologic models, parallel computing, message passing interface (MPI)

EXTENDED ABSTRACT 

The Shuffled Complex Evolution (SCE-UA) 
method has been widely applied for calibration of 
rainfall-runoff models and has been shown to be 
robust and efficient search algorithm. In spite of its 
superiority, since many commonly used rainfall-
runoff models have large simulation times, the use 
of model calibrating algorithms may become 
impractical due to the high computational time 
involved. This would necessitate the use of 
superior parallel computing technologies in the 
calibrating algorithms, with the aim of reducing 
the computational times. This study aims to 
parallelize the SCE-UA to accelerate the model 
calibrating process. 

In the field of evolutionary algorithms (EAs), the 
use of parallel computing within the standard 
Genetic Algorithm (GA) has been researched into 
for the past two to three decades. There are three 
main parallel paradigms in evolutionary 
algorithms: the master-slave model, the diffusion 
model and the multi-population (or island) model. 
In this study, the master-slave model (see Figure 1) 
is adopted, since it is the simplest potential 
parallelization strategy, which can be easily 
implemented on a cluster of PCs linked by a Local 
Area Network (LAN). Moreover, in calibrating 
rainfall-runoff models, since the model simulation 
times are significantly greater than the 
communication times (between master and slaves), 
very good speedups are possible using master-
slave models. 

 

 

 

 

Figure 1. The master-slave parallelization strategy 

In the SCE-UA, since the population of points is 
split into a number of complexes that evolve 
independent of each other, it is a fully parallel 
problem. Thus, in the proposed parallel version of 
the SCE-UA, model evaluations for each complex 
are executed in parallel on separate PCs, as 
compared to the sequential evaluation of 
complexes on a single PC in the original SCE-UA. 
The parallel computing capability is based on 
master-slave architecture, and the Message Passing 
Interface (MPI) is used to establish the master-
slave interactions.  

In this parallel SCE-UA, the master process is the 
SCE-UA, which is a lightweight process, as its 
computational cost is negligible in comparison to 
the slave processes, which actually do the model 
simulations. Therefore, the master process and the 
first slave (also the first complex in SCE-UA) are 
run on the same physical PC.  

In this study, it is observed that the parallelization 
of SCE-UA leads to ‘linear speedups’ in the model 
calibrating process. This means that if a calibration 
run requires 20 hours to complete 1000 model 
simulations, then using 4 PCs in parallel would 
take 5 hours to complete the same number of 
model simulations. Moreover, parallelization of 
SCE-UA using PCs that are linked by a LAN is an 
easy and affordable alternative to achieve 
significant reduction of the computational time, 
without resorting to expensive high-end systems. 
Such savings in computational time in turn 
facilitates significantly more search of the 
parameter space during the calibration process. 
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1. INTRODUCTION 

With the availability of high-performance 
computer technology, many complex hydrologic 
and hydrodynamic models are available, which are 
characterized by a multitude of parameters. Due to 
spatial and temporal variability, measurement 
errors, etc., the values of many of these parameters 
will not be exactly known, necessitating model 
calibration using a historical record of input-output 
data. The successful application of such models 
depends on how well the model is calibrated. 

Traditionally, systematic manual methods have 
been used for the calibration of conceptual rainfall-
runoff models. However, in order to obtain reliable 
results this type of calibration requires that the user 
be an expert and it is usually a very long time-
consuming process. Because of this, there has been 
a great deal of research into the development of 
automatic methods for parameter estimation, 
which utilize the speed and power of digital 
computers. These methods may be divided into 
two categories: local and global methods. Local 
methods are susceptible to getting trapped in local 
optima, since the shape of the response surface 
(the objective function mapped out in the 
parameter space) is known to be complex, with the 
existence of many regions of attraction and 
multiple local optima in each region. To deal with 
this problem of multiple local minima, global 
optimization methods have been applied 
extensively. These methods are global in the sense 
that they constitute a parallel search of the search 
space (as opposed to a point by point search) by 
using a population of potential solutions. Among 
the global model calibrating algorithms, the 
Genetic Algorithms (Wang, 1991) and Shuffled 
Complex Evolution (SCE-UA, Duan et al., 1992) 
have been popular. 

In various studies, SCE-UA based algorithms have 
been demonstrated to be robust and efficient in 
calibrating rainfall-runoff models (Kuczera, 1997; 
Franchini et al., 1998; Muttil and Liong, 2004). A 
further consideration in assessing its performance 
is that of the computational time required for the 
calibrations. Application of global optimization 
methods like the SCE-UA to high-dimensional 
parameter estimation problems requires the 
solution of a large number of model runs. The 
computational burden of these model runs often 
renders the use of such advanced global 
optimization algorithms for calibrating parameters 
in complex hydrologic models impractical. In such 
a scenario, it may be imperative to resort to super- 
or/and parallel computing.  

In the field of water resources and hydrology, 
parallel computing has been used only in the very 
recent past. Cheng et al. (2005) used a parallel 
genetic algorithm (PGA) for watershed model 
calibration in order to speed up the calibration 
procedure. In calibrating the Xinanjiang 
conceptual rainfall-runoff model, they 
demonstrated that the PGA was superior to the 
serial GA with respect to overall optimization time 
and also the stability of the solution. Vrugt et al. 
(2006) present a parallel version of the Shuffled 
Complex Evolution Metropolis (SCEM-UA) 
global optimization algorithm for stochastic 
estimation of parameters in environmental models. 
Using three case studies, which include calibration 
of the SAC-SMA conceptual rainfall-runoff 
model, they also demonstrate that parallel 
parameter estimation results in considerable time 
savings when compared with traditional sequential 
optimization runs. In yet another study, Tang et al. 
(2007) demonstrate and compare the master-slave 
and the multi-population parallelization strategies 
(described later in Section 2) for the Epsilon-
Nondominated Sorted Genetic Algorithm-II (ε-
NSGAII) on a hydrologic model calibration test 
case and also on a discrete, constrained 
groundwater monitoring application. They 
conclude that the master-slave approach is superior 
to the multi-population approach on both these 
water resources applications, especially 
considering its simplicity and ease of 
implementation.  

This study aims to speed up the model calibration 
process using the SCE-UA algorithm. Parallel 
computing capability is implemented into the 
SCE-UA by evaluating each complex in parallel 
on separate personal computers (PCs). The parallel 
computing capability is based on master-slave 
architecture, and the Message Passing Interface 
(MPI) is used to establish the master-slave 
interactions. Traditionally, this speeding up would 
require expensive and high-end systems. Recently, 
due to the decreasing hardware cost and the 
increasing computation power of workstations, 
using a cluster of PCs has become an affordable 
and attractive alternative to high-end systems. 
Clusters of PCs have the following advantages: 
they have a better price/performance ratio than 
high-end systems; they may be upgraded more 
frequently; they can employ different kinds of 
machines; and, their aggregate power scales up 
with the increase in the number of PCs (Cheng et 
al., 2005). Moreover, a cluster of PCs may now be 
easily linked by a Local Area Network (LAN) to 
provide researchers with more powerful integrated 
PC-LAN systems. In this study, it is observed that 
the parallel evaluation of the complexes in the 
SCE-UA on separate PCs is an easy and affordable 
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alternative to achieve significant reduction of the 
computational time, thus making it possible for an 
exhaustive search of the parameter space. The next 
section briefly describes the different ways in 
which parallel computing has been used in the 
field of evolutionary algorithms (EAs). This is 
followed by the description of how parallel 
computing is incorporated into the SCE-UA. 
Finally, conclusions that can be drawn from this 
study are presented. 

2. PARALLEL COMPUTING IN 
EVOLUTIONARY ALGORITHMS 

During the past decade there has been considerable 
progress in the development of distributed 
computer systems using the power of multiple 
processors to efficiently solve complex, high-
dimensional computational problems (Eklund, 
2004). Parallel computing offers the possibility of 
solving computationally challenging optimization 
problems in less time than is possible using 
ordinary serial computing (Goldberg et al., 1995). 
In the field of evolutionary algorithms, the use of 
parallel computing within the standard Genetic 
Algorithm (GA) has been researched into for the 
past two to three decades. Bethke (1976) made one 
of the first investigations of parallel GA models. 
He described a global population with a partial 
exchange of individuals in successive generations. 
His analysis showed that, implemented on parallel 
hardware, near-linear speedup could be achieved. 
One of the first real implementations of parallel 
GA was made by Tanese (1989). She conducted 
studies of different topologies and migration rates 
on a distributed population model on a 64 
processor N-CUBE system. In some experiments 
she reported super-linear speedup compared to 
sequential GA. Such parallel GAs (PGAs) has 
been subsequently applied in many fields 
(Abramson et al., 1993; Pereira and Lapa, 2003).  

In this section, we briefly review the key 
parallelization strategies in genetic algorithms. 
PGAs may be categorized into three different basic 
approaches: master–slave GAs, cellular GAs (fine-
grained) and multi-population GAs (island or 
distributed) (Cantu-Paz, 1997; Pereira and Lapa, 
2003; Cheng et al., 2005). 

The master–slave GA, as shown in Figure 1, is the 
parallel version of the simple GA. Consequently, it 
does not alter nor restrict the genetic operations. 
Only the fitness evaluation is distributed among 
the available machines. Generation control, 
selection and genetic operations are not paralleled. 
The search-space exploration of this PGA 
paradigm is conceptually identical to that of GAs. 
It is important to note that, in order to realize any 

computational speedup, computations of the 
objective function should be fairly complex and 
time consuming. Otherwise, the communication 
time might overwhelm the computation time and 
hence poor speedup results. Thus, this method 
should only be used when the effort on fitness 
evaluation is substantial. 

 

 

 

 

 

Figure 2. The cellular GA parallelization strategy 

In cellular GAs, each individual member of the 
population is put into a processor (cell). The cells 
are geographically arranged so that neighborhood 
restrictions will be imposed in the crossover 
operations, as shown in Figure 2. This paradigm 
requires a number of processors and is usually 
running on massive parallel computers with single 
instruction multiple data stream (SIMD). The 
platform is not easily available for ordinary users 
and therefore this method is rarely used unless a 
large-scale SIMD parallel computer is available. 

 

 

 

 

 

 

Figure 3. The multi-population parallelization 
strategy 

The multi-population GA is an ‘island’ paradigm, 
which is sometimes termed distributed or coarse-
grained approach. The paradigm is based on the 
phenomenon of natural populations evolving in 
relative isolation, such as those that might occur 
within some ocean island chains with limited 
migration. Communication backbones can connect 
processors in logical or physical geometric 
structures such as rings, meshes, triangles and 
hypercubes. Each sub-population is located in a 
processor (island) and evolved by a separate 
process. In order to promote cooperation between 
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processors, a new operator, called migration is 
created. According to some predefined strategy, 
individuals migrate from one processor to another. 
As migration occurs, information about different 
regions of the search space is exchanged between 
processors, thus providing more diversity in the 
search. The paradigm can therefore be 
implemented on a PC-LAN with a relatively small 
number of workstations. Figure 3 shows a typical 
ring topology of this paradigm. 

3. IMPLEMENTING PARALLELIZATION 
IN SCE-UA 

In this section, we present the implementation of 
parallel computing capability into the original 
serial SCE-UA. Of the three types of 
parallelization approaches discussed in the 
previous section, in this study, a master-slave 
approach is adopted since it is the simplest 
potential parallelization strategy, which can be 
easily implemented on a cluster of PCs linked by a 
LAN. Moreover, it should be noted that for many 
hydrologic and hydraulic models, since the model 
simulation times are significantly larger than the 
communication times (between master and slaves), 
very good speedups are possible using the master-
slave approach. The Message Passing Interface 
(MPI) is used to establish the master-slave 
interactions.  

The authors would like to point out that in a 
previous study, a parallel version of SCE-UA was 
developed by Sharma et al. (2006), who also used 
a master-slave approach. They had implemented 
the parallel SCE-UA on a Idra and Deeppurple 
cluster, running Red Hat Linux 7.2 and Tru64 
UNIX operating systems, respectively with 
Compaq Alpha architecture. These operating 
systems and high end servers are not as popular as 
the Windows based PCs, both in terms of ease of 
use and cost. Thus, the current implementation of 
parallel SCE-UA is much more affordable and can 
be easily implemented on the PC-LAN system. 
The following sub-sections describe the MPI 
library used and details of the parallel SCE-UA. 

3.1. The MPI Library 

The Message-Passing Interface (MPI) is a 
specification for the user interface to message-
passing libraries for parallel computers. MPI can 
be used to write programs for efficient execution 
on a wide variety of parallel machines, including 
massively parallel supercomputers, shared-
memory multiprocessors and networks of 
workstations. MPI allows the coordination of a 
program running as multiple processes in a 
distributed memory environment, yet is flexible 

enough to also be used in a shared memory 
system. MPI programs always work with 
processes, although commonly people talk about 
processors. When one tries to get maximum 
performance, one process per processor is selected 
as part of the mapping activity; this mapping 
activity happens at runtime, through the agent that 
starts the MPI program, normally called ‘mpirun’. 
The standardization of the MPI library is one of its 
most powerful features. What it means is the 
parallel programmer can write code containing 
MPI subroutine and function calls that will work 
on *any* machine on which the MPI library is 
installed without having to make changes in his 
code. A complete detail of the MPI is provided in 
Gropp et al. (1994) and Pacheco (1997). 

The MPICH, an implementation of the full MPI-
1.2 specification, is used in this study. MPICH is a 
freely available, portable implementation of MPI, a 
standard for message-passing for distributed-
memory applications used in parallel computing. 
MPICH is available for Microsoft Windows and 
for most flavours of UNIX (including Linux and 
Mac OS X). Moreover, MPICH is a developed 
program library. More information including 
tutorials can be found on the MPICH web site at:  
http://www-unix.mcs.anl.gov/mpi/mpich1/. 

3.2. The original SCE-UA 

The shuffled complex evolution (SCE-UA) 
algorithm was developed at the University of 
Arizona (Duan et al. 1992, 1993) to deal with the 
difficult problems encountered in the calibration of 
conceptual rainfall-runoff models. It incorporates 
the best features from several existing methods, 
including competitive evolution, the combination 
of random and deterministic strategies, the 
concepts of controlled random search, and 
complex shuffling. 

In essence, the SCE-UA begins with an initial 
population of points sampled randomly from the 
feasible space. The population is partitioned into 
one or more complexes, each containing a fixed 
number of points. Each complex is allowed to 
evolve based on a competitive evolution technique 
that uses the simplex search method (Nelder and 
Mead, 1965) to direct the search in the correct 
direction. Periodically, the entire population is 
shuffled and points are reassigned to new 
complexes to enable information sharing. This 
shuffling strategy reduces the chance of complexes 
being trapped on flat regions and thus converging 
prematurely. As the search progresses, the entire 
population tends to converge toward the 
neighbourhood of the global optimum, provided 
the initial population size is sufficiently large. For 
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a lucid explanation on the details of the algorithm, 
the reader is referred to Duan et al. (1994). 

The original SCE-UA is a serial algorithm in the 
sense that the evaluation of the objective function 
is done in a sequential manner on a single PC. The 
next sub-section presents the proposed parallel 
version of the SCE-UA. 

3.3. The parallel SCE-UA 

A feasible way of solving a problem as quickly as 
possible is to partition the problem into smaller 
independent pieces, so that all the pieces can be 
solved simultaneously (or in parallel). In the field 
of parallel computing, problems for which no 
particular effort is needed to segment it into a very 
large number of parallel tasks, and there is no 
essential dependency (or communication) between 
those parallel tasks are called ‘embarrassingly 
parallel’ problems. In other words, each task can 
be computed independently from every other task, 
thus each task could be made to run on a separate 
processor to achieve quicker results. In the SCE-
UA, since the population of points is partitioned 
into a number of complexes and the complexes 
evolve independent of each other, this problem 
falls within the category of an embarrassingly 
parallel one. Thus, it seems natural to assign the 
model simulations within each complex to a slave 
PC. Hence, the number of complexes and the 
number of slave PCs used are the same. 

The parallel SCE-UA is same as the original serial 
algorithm, except that the complexes are evolved 
in parallel on multiple slave PCs rather than on a 
single PC. The slave PCs are controlled by the 
master process (on the master PC) and information 
is passed to and fro between the master process 
and the slaves. The master process is the SCE-UA, 
which is a lightweight process, as the 
computational cost of SCE-UA is negligible in 
comparison to the slave processes, which actually 
do the computationally heavy model simulations. 
Therefore, the master process and the first slave 
(also the first complex in SCE-UA) are run on the 
same physical processor. The evolved complexes 
from multiple slave PCs are sent back to the 
master PC, where the complexes are combined and 
shuffled. If the stopping criteria are not met, the 
population is again partitioned into complexes and 
a new loop starts. The working of the parallel 
SCE-UA is demonstrated in Figure 4. 

The efficacy of a parallel processing application 
can be judged using the concept of ‘speedup’, Sp, 
defined in Eqn. (1) below: 

 Sp = Ts / Tp   (1) 

 

Figure 4. Simplified working of the parallel SCE-
UA algorithm 

Speedup compares the clock time required to solve 
an application in serial (i.e. on one processor), Ts, 
with the clock time required using multiple 
processors, Tp. The proposed parallel SCE-UA is 
observed to attain ‘linear speedups’, which means 
that when P processors are used to solve an 
application, the parallel computing time, Tp, will 
equal (Ts / P), i.e. speedup is equal to the number 
of processors used. For example, if a calibration 
run requires 20 hours to complete 1000 model 
simulations, then using 5 PCs in parallel would 
take 4 hours to complete the same number of 
model simulations.  

4. CONCLUSION 

This study proposes a parallel version of the SCE-
UA algorithm with the aim of reducing the 
computational time for calibrating rainfall-runoff 
models. In the SCE-UA, since the model 
simulation in the partitioned complexes are 
independent of each other, it seems natural to 
assign the simulations within each complex to a 
slave PC, making the master-slave parallelization 
strategy an obvious choice. Moreover, the master-
slave strategy is found to be affordable and easy to 

1944



implement on a low-cost PC-LAN system and thus 
there is no need to resort to expensive high-end 
systems. It is also observed that the parallelization 
of SCE-UA leads to ‘linear speedups’ in the model 
calibrating process, resulting in substantial 
reduction in computational time for calibrating 
rainfall-runoff models. This in turn facilitates 
significantly more search of the parameter space 
during the calibration process. 
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