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EXTENDED ABSTRACT 

Developments in numerical groundwater 
modelling have shown that models become more 
and more ambitious with increasing computer 
capacity. To meet the need for accurate 
instruments to support decision-making, both 
scale and resolution of models have grown 
enormously during last years.  

Within the recent project ‘Development of a 
Methodology for Interactive Planning for Water 
Management’ (MIPWA) the challenge was taken 
to develop a high-resolution numerical 
groundwater model for the whole north of the 
Netherlands. This MODFLOW model 
encompasses an area of more than 24.000 km2, 
has seven quasi-3D model layers and a resolution 
of 25 x 25 m2. With this enormous groundwater 
model – which is unique in its size – 13 years of 
daily groundwater fluctuations had to be 
simulated. 

Both running and calibrating such a large model 
require innovations in model building, model 
processing and data handling. Data-compression 
techniques were required to store all input and 
output data. To run the model, both upscaling and 
model-decomposition techniques were develoved. 
For a transient run (over 4500 time steps) on the 
highest resolution, the model was decomposed 
into 473 overlapping submodels. Transient 
boundary conditions of the submodels were taken 
from a lower-resolution model. Each submodel 
could be run individually, so the process was 
perfectly suited for parallel processing. Therefore, 
we developed a computational grid using the 200 
computers available in our office. The moment 
employees logged off, their computer came 

available for the grid. Obviously the weekends 
appeared to be the most productive days! 

The grid was also crucial for model calibration. We 
used the Representer method for calibrating model 
parameters in a stationary mode. The Representer 
method requires a forward run and an adjoint run 
each iteration to calculate the so-called representer 
of each observation. In total more than 8000 
groundwater observation locations were available 
and hence more than 8000 runs had to be carried 
out. Each representer run was distributed over the 
grid using PVM (Parallel Virtual Machine). 

Grid computing revealed itself as the only way to 
complete the whole project within reasonable time. 
Total CPU time of model calibration and running 
(ca. 50 runs during model-construction process) 
was estimated at more than 20 years. Using grid 
computing, the calculation time was reduced to 
several months. 

In addition to model calibration and model running, 
grid computing is also helpful in data-assimilation 
applications. In a preliminary study, Ensemble 
Kalman Filtering techniques were applied for 
nowcasting and forecasting of groundwater 
fluctuations using assimilated groundwater. Model 
states were estimated by calculating 200 ensembles 
distributed over the grid. Subsequently, 10-day 
forecasts of groundwater levels were calculated by 
processing 50 ensembles of the Ensemble 
Prediction System (EPS) calculated by the 
European Centre for Medium-Range Weather 
Forecasts. As the intention is to produce forecasts 
on daily basis, a computational grid is necessary to 
run all ensembles within one day.  
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1. INTRODUCTION 

In 2005 the ‘Development of a Methodology for 
Interactive Planning for WAter management’ 
(MIPWA) project has been started. In this project 
seventeen water management organisations in the 
north of the Netherlands (four provinces, three 
drinking water companies, six waterboards and 
three municipalities) developed – under leadership 
of TNO and together with research institute Alterra 
and two consultancy agencies – a high-resolution 
regional decision-making tool for groundwater 
management.  

The MIPWA project area is shown in Figure 1. It 
is a varied agricultural and natural area with little 
urban development. Almost half of the area is near 
sea level and a spread of small channels controlled 
by weirs and pumps dominates the water system 
here. The other half of the area has a more natural 
sloping drainage system. Total groundwater 
withdrawal for drinking water and industrial needs 
is 380 million m3 per year.  

 

Figure 1. MIPWA project area (dark grey) and 
total model area (shaded) 

The MIPWA model covers the area of interest plus 
a buffer area to decrease the impact of the model 
boundaries (145 km East-West and 167 km North-
South). It is a MODFLOW model with 25 m grid 
cells. In total the model has more than 238.000.000 
active model grid cells (Figure 1) over 7 quasi-3D 
model layers. The model time step is 1 day. The 
model has been run for a period of 13 years (1989-
2001). 

The large dimensions of the model required special 
computer facilities. We needed 2 TB data storage. 
For a model run 2 GB internal memory was 
needed. The main challenge, however, was 

reducing CPU time. As the model could not be run 
on a single computer, model decomposition 
technique needed to be applied. We choose to 
decompose the model in such way that the 
submodels could be run independently of each 
other and thus in a parallel mode. 

This paper presents how we applied parallel 
computing within groundwater modelling research. 
Our goal is to demonstrate the strengths of grid 
computing in groundwater modelling applications, 
rather than to address detailed technical issues of 
computational grids.  

First, we briefly discuss the computational grid we 
developed to facilitate parallel computing. Second, 
we present a method for model decomposition that 
makes it possible to distribute model runs over the 
grid easily. Furthermore, we describe the 
application of grid computing during model 
calibration. Finally, we end with some concluding 
remarks and describe future applications of grid 
computing in groundwater modelling. 

2. DESCRIPTION OF COMPUTATIONAL 

GRID 

To facilitate parallel running of the model, we built 
a computational grid (e.g. Foster and Kesselman, 
1999; Snavely et al., 2003) using all computers 
available in the computer network. Approximately 
200 computers were upgraded with 2 GB internal 
memory.  In addition, a Linux operating system 
was installed on all computers. When one logs off 
from Microsoft Windows the system reboots itself 
after 5 minutes. When the computer restarts one 
can choose between Linux (making the computer 
available for the grid) and Microsoft Windows 
(normal login). If no choice is made within 5 
minutes, the computer automatically starts in 
Linux mode and becomes available for the grid. 

Practical advantages of grid computing over, for 
instance, a supercomputer are: 

1. Grid computing is relatively cheap 
because it uses computers that are already 
available; 

2. It is flexible. Computers can be added and 
removed easily; 

3. A computational grid remains up-to-date. 
New computers that are added after 
several years generally have up-to-date 
specifications. So the grid is being 
upgraded “automatically”. 
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Disadvantages of a computational grid are: 

1. There is a danger of high network load. 
This may greatly influence the 
performance of the grid; 

2. The size of the grid depends on the 
willingness of colleagues to log off every 
day. 

3. MODEL DECOMPOSITION 

3.1. Introduction 

The MIPWA groundwater model as described in 
the first section has more than 238.000.000 grid 
cells. This model cannot be run on a single 
computer due to memory demand and CPU time. 
Hence the model needs to be decomposed into 
submodels. The main problem of using submodels, 
however, is that for transient calculations boundary 
conditions need to be transient as well. So for each 
of the 4748 time steps boundary conditions need to 
be determined a-priori. In this section we present a 
method for model decomposition using transient 
boundary conditions. This method consists of the 
following steps: 

1. Run an upscaled model and store heads of 
each time step; 

2. Downscale heads and store these on 
intervals only; 

3. Define submodels using the heads of step 
2 as boundary conditions; 

4. Run overlapping submodels and store 
heads on intervals each time step; 

5. Define new submodels using an offset so 
that heads of step 4 can be used as new 
boundary conditions and run new 
submodels. 

3.2. Model upscaling 

The first step is to upscale the model so that it can 
be run on a single computer. For the MIPWA 
model we had to go to a resolution 250x250 m2. At 
this resolution the runtime was 48 hours on a 3.0 
GHz machine (4748 time steps). For each time 
step calculated heads of each model layer were 
stored (ca. 41 GB data). 

3.3. Downscaling of boundary conditions 

High-resolution boundary conditions are now 
calculated by downscaling the stored 250x250 m2 
heads using an interpolation algorithm. This is 
illustrated in Figure 2. As 4748 time steps x 7 
model layers = 33236 grids of high-resolution 
groundwater heads would need more than 5 TB 

disk storage, we only store high-resolution data at 
intervals of 100 grid cells, i.e. row number 1, 101, 
201, …, 6680, and column number 1, 101, 201, …, 
5800 (see Figure 2). 

 

Figure 2. Procedure for calculating transient 
boundary conditions for submodels 

3.4. Definition of submodels 

As boundary conditions are stored on an interval 
of 100 cells, submodels must have a dimension of 
a multiple of 100. Now the question is: what are 
the optimal dimensions of a submodel? 
Computational time increases exponentially with 
increasing model dimensions. On the other hand, 
the influence of boundary conditions becomes 
relatively stronger with decreasing model 
dimensions. Nevertheless, the main constraint for 
choosing the model dimensions is a practical one. 
Model results are stored at the end of the run. 
When a job is removed from the computational 
grid before the run is finished, it has to be rerun 
completely. Since most computers in the grid are 
only available at night, a job must take no longer 
than 13-14 hours. This was realised with 
submodels of 300 x 300 grid cells.  

As we used downscaled boundary conditions, we 
defined a buffer zone of 50 cells to damp the effect 
of errors in boundary conditions. Hence, the so-
called area of interest of each submodel was 200 x 
200 cells (see Figure 3). In this way we needed 
473 overlapping submodels to cover the whole 
model area. 

upscaled model results 

high-resolution downscaled  
model results stored at 
regular intervals (grey bands) 

downscaling 
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Figure 3. Illustration of areas of interest and 
overlapping buffer zones. 

3.5. Storage of high-resolution boundary 

conditions 

In groundwater modelling a buffer zone of 50 cells 
x 25 m = 1250 m is small. Boundary condition 
effects are generally not damped completely within 
this range. Therefore, for each submodel, 
calculated heads are stored each time step at an 
interval of 100 cells (see Figure 4). These heads 
replace the downscaled boundary conditions. 
When all submodels have been run, new 
submodels are defined with an offset of 100 cells 
(in both directions). The new submodels are then 
run with the newly calculated boundary conditions.  

 

Figure 4. Definition of buffer zone and new 
boundary conditions for a submodel 

 Accurate model results were obtained by running 
2-3 iterations as described above. Three iterations 
were needed only in areas with slow damping and 
near groundwater extraction wells. 

Total CPU time of 473 model runs was more than 
6600 hours. Two model runs cost 13200 hours. 
This is 1.5 years! Using the computational grid 
with, on average, 140 machines two model runs 
could be completed within 4 days. Hence, in this 
project the availability of a computational grid 
made a big difference to the feasibility of the 
project. 

4. MODEL CALIBRATION 

In various studies, parallel computing has been 
demonstrated to speed up the process of model 
calibration significantly (Eklund, 2004; Herrera et 
al., 1998; Vrugt et al., 2006). The MIPWA 
groundwater model presented in this paper was 
calibrated on observations of groundwater head 
using the Representer method (Valstar et al., 
2004). This method is perfectly suited for 
parallelisation since many independent model runs 
has to be carried out. Running a Representer 
calibration run on the computational grid is 
therefore expected to reduce total runtime 
dramatically. This section briefly address the 
issues concerning the calibration of the MIPWA 
model using the computational grid. 

We calibrated transmissivity of the aquifers and 
vertical conductances of the aquitards with a 
stationary model. The Representer method requires 
a forward run and an adjoint run per observation 
each iteration to calculate the so-called representer 
of the observation. More than 8000 groundwater 
observation locations were available. This means 
that 8000 forward and adjoint runs needed to be 
executed.  

Obviously, running 8000 forward and adjoint runs 
with the high-resolution 25x25 m2 model was 
infeasible. Therefore, we used an upscaled model. 
Scaling of the non-linear surface water system was 
of major importance. We applied the Cauchy 
correction methods proposed by Vermeulen et al. 
(2006) in an iterative manner. The Cauchy 
corrections were calculated a-priori as the 
difference between high-resolution heads and low-
resolution (averaged) heads. These correction 
terms were then applied to the surface water and 
drainage system in the upscaled model. 
Observations were corrected as well. 

Each representer run was distributed over the grid 
using Parallel Virtual Machine (PVM) software 
(Geist et al., 1994). PVM is very robust and stable 

area of interest 

buffer zone 

overlap 

boundary of submodel 

area of interest 

downscaled 
boundary condition 

buffer zone 

area of interest 

new boundary 
conditions 
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in a computational grid where machines are added 
and removed during the process. When a machine 
is removed from the grid, the job is reclaimed an 
sent to another machine. 

Similar to a model run, a calibration run was only 
feasible due to the grid. Without a grid, calibration 
would have taken several years. 

5. CONCLUSIONS 

This paper described the application of grid 
computing in groundwater modelling research. 
During the MIPWA project we developed a large-
scale high-resolution numerical groundwater 
model. Running and calibration of this model 
required the introduction of grid computing. 

Model decomposition techniques were developed 
to enable parallel running on the grid. On average, 
the grid consisted of 140 computers with 3 GHz 
processors and 2 GB internal memory per 
computer. This enormous computer capacity made 
it possible to make several model and calibration 
runs within a couple of months instead of many 
years. 

At this moment, the computer grid has already 
been applied successfully in three other 
groundwater modelling projects. Furthermore, the 
grid is also perfectly suited for data-assimilation 
purposes. Recently, a pilot project was carried out 
to set up a forecasting system for groundwater 
levels. In this project a numerical groundwater 
model has been embedded in an ensemble Kalman 
filter. Groundwater levels were estimated by 
calculating 200 ensembles distributed over the 
grid. Subsequently, 10-day forecasts of 
groundwater levels were calculated by processing 
50 ensembles of the Ensemble Prediction System 
(calculated by the European Centre for Medium-
Range Weather Forecasts ECMWF) through the 
groundwater model.  
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