
Large-Scale High-Resolution Groundwater Modelling

using Grid Computing

W.L. Berendrecht
1
, A. Lourens

1
, J.J.J.C. Snepvangers

1
 and B. Minnema

1

1TNO Built Environment and Geosciences – Geological Survey of the Netherlands, Utrecht, The Netherlands
Email: wilbert.berendrecht@tno.nl

Keywords: grid computing, model decomposition, groundwater, high-resolution modelling, representer

calibration

EXTENDED ABSTRACT

Developments in numerical groundwater
modelling have shown that models become more
and more ambitious with increasing computer
capacity. To meet the need for accurate
instruments to support decision-making, both
scale and resolution of models have grown
enormously during last years.

Within the recent project ‘Development of a
Methodology for Interactive Planning for Water
Management’ (MIPWA) the challenge was taken
to develop a high-resolution numerical
groundwater model for the whole north of the
Netherlands. This MODFLOW model
encompasses an area of more than 24.000 km2,
has seven quasi-3D model layers and a resolution
of 25 x 25 m2. With this enormous groundwater
model – which is unique in its size – 13 years of
daily groundwater fluctuations had to be
simulated.

Both running and calibrating such a large model
require innovations in model building, model
processing and data handling. Data-compression
techniques were required to store all input and
output data. To run the model, both upscaling and
model-decomposition techniques were develoved.
For a transient run (over 4500 time steps) on the
highest resolution, the model was decomposed
into 473 overlapping submodels. Transient
boundary conditions of the submodels were taken
from a lower-resolution model. Each submodel
could be run individually, so the process was
perfectly suited for parallel processing. Therefore,
we developed a computational grid using the 200
computers available in our office. The moment
employees logged off, their computer came

available for the grid. Obviously the weekends
appeared to be the most productive days!

The grid was also crucial for model calibration. We
used the Representer method for calibrating model
parameters in a stationary mode. The Representer
method requires a forward run and an adjoint run
each iteration to calculate the so-called representer
of each observation. In total more than 8000
groundwater observation locations were available
and hence more than 8000 runs had to be carried
out. Each representer run was distributed over the
grid using PVM (Parallel Virtual Machine).

Grid computing revealed itself as the only way to
complete the whole project within reasonable time.
Total CPU time of model calibration and running
(ca. 50 runs during model-construction process)
was estimated at more than 20 years. Using grid
computing, the calculation time was reduced to
several months.

In addition to model calibration and model running,
grid computing is also helpful in data-assimilation
applications. In a preliminary study, Ensemble
Kalman Filtering techniques were applied for
nowcasting and forecasting of groundwater
fluctuations using assimilated groundwater. Model
states were estimated by calculating 200 ensembles
distributed over the grid. Subsequently, 10-day
forecasts of groundwater levels were calculated by
processing 50 ensembles of the Ensemble
Prediction System (EPS) calculated by the
European Centre for Medium-Range Weather
Forecasts. As the intention is to produce forecasts
on daily basis, a computational grid is necessary to
run all ensembles within one day.

1954

1. INTRODUCTION

In 2005 the ‘Development of a Methodology for
Interactive Planning for WAter management’
(MIPWA) project has been started. In this project
seventeen water management organisations in the
north of the Netherlands (four provinces, three
drinking water companies, six waterboards and
three municipalities) developed – under leadership
of TNO and together with research institute Alterra
and two consultancy agencies – a high-resolution
regional decision-making tool for groundwater
management.

The MIPWA project area is shown in Figure 1. It
is a varied agricultural and natural area with little
urban development. Almost half of the area is near
sea level and a spread of small channels controlled
by weirs and pumps dominates the water system
here. The other half of the area has a more natural
sloping drainage system. Total groundwater
withdrawal for drinking water and industrial needs
is 380 million m3 per year.

Figure 1. MIPWA project area (dark grey) and
total model area (shaded)

The MIPWA model covers the area of interest plus
a buffer area to decrease the impact of the model
boundaries (145 km East-West and 167 km North-
South). It is a MODFLOW model with 25 m grid
cells. In total the model has more than 238.000.000
active model grid cells (Figure 1) over 7 quasi-3D
model layers. The model time step is 1 day. The
model has been run for a period of 13 years (1989-
2001).

The large dimensions of the model required special
computer facilities. We needed 2 TB data storage.
For a model run 2 GB internal memory was
needed. The main challenge, however, was

reducing CPU time. As the model could not be run
on a single computer, model decomposition
technique needed to be applied. We choose to
decompose the model in such way that the
submodels could be run independently of each
other and thus in a parallel mode.

This paper presents how we applied parallel
computing within groundwater modelling research.
Our goal is to demonstrate the strengths of grid
computing in groundwater modelling applications,
rather than to address detailed technical issues of
computational grids.

First, we briefly discuss the computational grid we
developed to facilitate parallel computing. Second,
we present a method for model decomposition that
makes it possible to distribute model runs over the
grid easily. Furthermore, we describe the
application of grid computing during model
calibration. Finally, we end with some concluding
remarks and describe future applications of grid
computing in groundwater modelling.

2. DESCRIPTION OF COMPUTATIONAL

GRID

To facilitate parallel running of the model, we built
a computational grid (e.g. Foster and Kesselman,
1999; Snavely et al., 2003) using all computers
available in the computer network. Approximately
200 computers were upgraded with 2 GB internal
memory. In addition, a Linux operating system
was installed on all computers. When one logs off
from Microsoft Windows the system reboots itself
after 5 minutes. When the computer restarts one
can choose between Linux (making the computer
available for the grid) and Microsoft Windows
(normal login). If no choice is made within 5
minutes, the computer automatically starts in
Linux mode and becomes available for the grid.

Practical advantages of grid computing over, for
instance, a supercomputer are:

1. Grid computing is relatively cheap
because it uses computers that are already
available;

2. It is flexible. Computers can be added and
removed easily;

3. A computational grid remains up-to-date.
New computers that are added after
several years generally have up-to-date
specifications. So the grid is being
upgraded “automatically”.

1955

Disadvantages of a computational grid are:

1. There is a danger of high network load.
This may greatly influence the
performance of the grid;

2. The size of the grid depends on the
willingness of colleagues to log off every
day.

3. MODEL DECOMPOSITION

3.1. Introduction

The MIPWA groundwater model as described in
the first section has more than 238.000.000 grid
cells. This model cannot be run on a single
computer due to memory demand and CPU time.
Hence the model needs to be decomposed into
submodels. The main problem of using submodels,
however, is that for transient calculations boundary
conditions need to be transient as well. So for each
of the 4748 time steps boundary conditions need to
be determined a-priori. In this section we present a
method for model decomposition using transient
boundary conditions. This method consists of the
following steps:

1. Run an upscaled model and store heads of
each time step;

2. Downscale heads and store these on
intervals only;

3. Define submodels using the heads of step
2 as boundary conditions;

4. Run overlapping submodels and store
heads on intervals each time step;

5. Define new submodels using an offset so
that heads of step 4 can be used as new
boundary conditions and run new
submodels.

3.2. Model upscaling

The first step is to upscale the model so that it can
be run on a single computer. For the MIPWA
model we had to go to a resolution 250x250 m2. At
this resolution the runtime was 48 hours on a 3.0
GHz machine (4748 time steps). For each time
step calculated heads of each model layer were
stored (ca. 41 GB data).

3.3. Downscaling of boundary conditions

High-resolution boundary conditions are now
calculated by downscaling the stored 250x250 m2
heads using an interpolation algorithm. This is
illustrated in Figure 2. As 4748 time steps x 7
model layers = 33236 grids of high-resolution
groundwater heads would need more than 5 TB

disk storage, we only store high-resolution data at
intervals of 100 grid cells, i.e. row number 1, 101,
201, …, 6680, and column number 1, 101, 201, …,
5800 (see Figure 2).

Figure 2. Procedure for calculating transient
boundary conditions for submodels

3.4. Definition of submodels

As boundary conditions are stored on an interval
of 100 cells, submodels must have a dimension of
a multiple of 100. Now the question is: what are
the optimal dimensions of a submodel?
Computational time increases exponentially with
increasing model dimensions. On the other hand,
the influence of boundary conditions becomes
relatively stronger with decreasing model
dimensions. Nevertheless, the main constraint for
choosing the model dimensions is a practical one.
Model results are stored at the end of the run.
When a job is removed from the computational
grid before the run is finished, it has to be rerun
completely. Since most computers in the grid are
only available at night, a job must take no longer
than 13-14 hours. This was realised with
submodels of 300 x 300 grid cells.

As we used downscaled boundary conditions, we
defined a buffer zone of 50 cells to damp the effect
of errors in boundary conditions. Hence, the so-
called area of interest of each submodel was 200 x
200 cells (see Figure 3). In this way we needed
473 overlapping submodels to cover the whole
model area.

upscaled model results

high-resolution downscaled
model results stored at
regular intervals (grey bands)

downscaling

1956

Figure 3. Illustration of areas of interest and
overlapping buffer zones.

3.5. Storage of high-resolution boundary

conditions

In groundwater modelling a buffer zone of 50 cells
x 25 m = 1250 m is small. Boundary condition
effects are generally not damped completely within
this range. Therefore, for each submodel,
calculated heads are stored each time step at an
interval of 100 cells (see Figure 4). These heads
replace the downscaled boundary conditions.
When all submodels have been run, new
submodels are defined with an offset of 100 cells
(in both directions). The new submodels are then
run with the newly calculated boundary conditions.

Figure 4. Definition of buffer zone and new
boundary conditions for a submodel

 Accurate model results were obtained by running
2-3 iterations as described above. Three iterations
were needed only in areas with slow damping and
near groundwater extraction wells.

Total CPU time of 473 model runs was more than
6600 hours. Two model runs cost 13200 hours.
This is 1.5 years! Using the computational grid
with, on average, 140 machines two model runs
could be completed within 4 days. Hence, in this
project the availability of a computational grid
made a big difference to the feasibility of the
project.

4. MODEL CALIBRATION

In various studies, parallel computing has been
demonstrated to speed up the process of model
calibration significantly (Eklund, 2004; Herrera et
al., 1998; Vrugt et al., 2006). The MIPWA
groundwater model presented in this paper was
calibrated on observations of groundwater head
using the Representer method (Valstar et al.,
2004). This method is perfectly suited for
parallelisation since many independent model runs
has to be carried out. Running a Representer
calibration run on the computational grid is
therefore expected to reduce total runtime
dramatically. This section briefly address the
issues concerning the calibration of the MIPWA
model using the computational grid.

We calibrated transmissivity of the aquifers and
vertical conductances of the aquitards with a
stationary model. The Representer method requires
a forward run and an adjoint run per observation
each iteration to calculate the so-called representer
of the observation. More than 8000 groundwater
observation locations were available. This means
that 8000 forward and adjoint runs needed to be
executed.

Obviously, running 8000 forward and adjoint runs
with the high-resolution 25x25 m2 model was
infeasible. Therefore, we used an upscaled model.
Scaling of the non-linear surface water system was
of major importance. We applied the Cauchy
correction methods proposed by Vermeulen et al.
(2006) in an iterative manner. The Cauchy
corrections were calculated a-priori as the
difference between high-resolution heads and low-
resolution (averaged) heads. These correction
terms were then applied to the surface water and
drainage system in the upscaled model.
Observations were corrected as well.

Each representer run was distributed over the grid
using Parallel Virtual Machine (PVM) software
(Geist et al., 1994). PVM is very robust and stable

area of interest

buffer zone

overlap

boundary of submodel

area of interest

downscaled
boundary condition

buffer zone

area of interest

new boundary
conditions

1957

in a computational grid where machines are added
and removed during the process. When a machine
is removed from the grid, the job is reclaimed an
sent to another machine.

Similar to a model run, a calibration run was only
feasible due to the grid. Without a grid, calibration
would have taken several years.

5. CONCLUSIONS

This paper described the application of grid
computing in groundwater modelling research.
During the MIPWA project we developed a large-
scale high-resolution numerical groundwater
model. Running and calibration of this model
required the introduction of grid computing.

Model decomposition techniques were developed
to enable parallel running on the grid. On average,
the grid consisted of 140 computers with 3 GHz
processors and 2 GB internal memory per
computer. This enormous computer capacity made
it possible to make several model and calibration
runs within a couple of months instead of many
years.

At this moment, the computer grid has already
been applied successfully in three other
groundwater modelling projects. Furthermore, the
grid is also perfectly suited for data-assimilation
purposes. Recently, a pilot project was carried out
to set up a forecasting system for groundwater
levels. In this project a numerical groundwater
model has been embedded in an ensemble Kalman
filter. Groundwater levels were estimated by
calculating 200 ensembles distributed over the
grid. Subsequently, 10-day forecasts of
groundwater levels were calculated by processing
50 ensembles of the Ensemble Prediction System
(calculated by the European Centre for Medium-
Range Weather Forecasts ECMWF) through the
groundwater model.

6. ACKNOWLEDGMENTS

We are very grateful to our computer services staff
for their commitment to this project. Without the
innovative ideas and support of Rogier van de Pol,
John Veldhuis and Sylvester Sleeman of TNO, we
would not have succeeded in building the
computational grid.

7. REFERENCES

Eklund, S.E. (2004), A massively parallel
architecture for distributed genetic
algorithms. Parallel Computing, 30, 647–
676.

Foster, I. and C. Kesselman, Eds. (1999), The

Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann
Publishers Inc.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam (1994), PVM

Parallel Virtual Machine, User's Guide and

Tutorial for Networked Parallel

Computing, MIT Press, 279 pp.,
Cambridge, Mass.

Herrera, F., Lozano, M., Moraga, C. (1998),
Hybrid distributed real-coded genetic
algorithms. In: Eiben, A.E., Bäck, T.,
Schoenauer, M., Schwefel, H.P. (Eds.),
Parallel Problem Solving from Nature (V).
pp. 879–888.

Snavely, A., G. Chun, H. Casanova, R.F. van der
Wijngaart, and M.A. Frumkin (2003),
Benchmarks for grid computing: a review
of ongoing efforts and future directions.
SIGMETRICS Perform. Eval. Rev. (30), 4,
27-32.

Valstar, J.R., D.B. McLaughlin, C.B.M. te Stroet
and F.C. van Geer (2004), A representer-
based inverse method for groundwater flow
and transport applications, Water Resour.

Res., 40, W05116, doi:10.1029/
2003WR002922.

Vermeulen, P.T.M., C.B.M. te Stroet, and A.W.
Heemink (2006), Limitations to upscaling
of groundwater flow models dominated by
surface water interaction, Water Resour.

Res., 42, W10406, doi:10.1029/
2005WR004620.

Vrugt, J.A., B. Ó Nualláin, B.A. Robinson, W.
Bouten, S.C. Dekker, and P.M.A. Sloot
(2006), Application of parallel computing
to stochastic parameter estimation in
environmental models, Computers &

Geosciences, 32(8), 1139-1155.

1958

