
Discovering Genetic Regulatory Network Models in 

Pisum sativum 

H.J. Stolk 
1, 2, 3 

and J. Hanan 
2, 3 4 

1 
Dione Complex Systems, Bangor, Gwynedd, United Kingdom 

2 
Advanced Computational Modelling Centre, 

3 
ARC Centre for Complex Systems & 

4 
ARC Centre of 

Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Queensland, Australia 

(for H.J. Stolk until beginning 2005) 

Email: Henk@DioneComplexSystems.com 

Keywords: Emergent models, multi-agent simulation, genetic regulatory network modelling

EXTENDED ABSTRACT 

Living organisms consist of interacting objects 

such as organs, cells, and genes. Therefore, they 

can be considered complex systems and we have 

applied a complex systems simulation 

methodology to a living organism, focussing on 

the relationship between interacting genes and 

phenotype. Different levels can be distinguished in 

a complex system, from the level with the most 

fine-grained entities, through intermediate levels of 

composite entities, to the whole system. Properties 

and interactions of entities at a lower or micro-

level give rise to properties and behaviour of more 

course-grained entities at a higher or macro-level, 

but the latter are not obviously predictable from 

the former. This phenomenon of macro-level 

properties and behaviour arising out of micro-level 

properties and behaviour, without being apparent 

from them, is known as emergence, a fundamental 

property of complex systems. 

The new Emergent Models methodology uses 

multi-agent simulations to study emergence in 

complex systems. Agents model micro- and 

macro-level components of a complex system. 

Emergent models reveal models of properties and 

behaviour of higher-level agents as emerging from 

properties and behaviour of lower-level agents. 

The present work examines the inverse problem of 

deriving models of individual agents from higher-

level agent properties and behaviour, using genetic 

programming algorithms to construct interacting 

individual agents, together composing a genetic 

regulatory network, from higher-level phenotype 

observations in the garden pea Pisum sativum. 

Genetic programming is an extension of genetic 

algorithms in which the genetic population 

contains computer programs or mathematical 

functions to solve problems. A genetic algorithm 

transforms a population of individual objects, each 

with an associated value of fitness, into a new 

generation of the population, using the principle of 

survival and reproduction of the fittest and 

analogues of biologically occurring genetic 

operations such as crossover (sexual 

recombination) and mutation. 

To make clear what a genetic regulatory network 

is, consider that multi-cellular organisms consist of 

many cells containing the same set of genes. Yet 

these cells are very different, because the genes are 

not expressed in the same way in each of them. 

Cell architecture and behaviour are determined by 

gene products, not the genes themselves. Genes 

can regulate the production of gene products by 

other genes in such a way that not all genes are 

expressed in all cells all the time. A set of genes 

and gene products, together with their regulatory 

interactions, constitutes a genetic regulatory 

network. A model of such a network describes 

interactions between DNA, RNA, proteins, and 

small molecules in an organism, through which 

gene expression is controlled. 

In biology phenotype data are often available, 

while genetic and biochemical mechanisms remain 

unknown. Thus, the ability to discover micro-level 

genetic regulatory network models from macro-

level phenotype data is highly desirable. In 

computational experiments models of genetic 

regulatory networks regulating branching in Pisum 

sativum were automatically discovered to fit 

biological data describing effects on the pea 

phenotype caused by mutations of genes thought to 

regulate branching. Some of the discovered models 

explain observed data without assuming two 

feedback effects appearing in a model formulated 

by human biologists.  

The experiments have demonstrated how the 

Emergent Models methodology can find models of 

genetic regulatory networks satisfying specific 

constraints and optimising fit to observed data. 

The Emergent Models methodology can assist 

scientific discovery by discovering models that 

may not be intuitively obvious to humans. 

1999

mailto:Henk@DioneComplexSystems.com


1. INTRODUCTION 

Living organisms consist of interacting objects 

such as organs, cells, and genes. Therefore, they 

can be considered complex systems and we have 

applied a complex systems simulation 

methodology to a living organism, focussing on 

the relationship between interacting genes and 

phenotype. 

In molecular biology it is particularly interesting to 

derive micro-level models from macro-level data, 

as data are often available at the macro-level (the 

level of the phenotype), while the genetic and 

biochemical mechanisms at the micro-level (the 

molecular level) remain unknown. Therefore, the 

ability to discover micro-level models from macro-

level phenotype data is highly desirable. The 

present work illustrates how micro-level models 

can be derived from macro-level data by applying 

a complex systems methodology to a problem in 

molecular biology with genetic and biochemical 

networks. 

Complex systems consist of interacting entities or 

components. Generally, a number of different 

levels can be distinguished in a complex system, 

from the bottom level with the most fine-grained 

entities, through intermediate levels of composite 

entities, up to the top level of the whole system. 

Properties and interactions of entities at a lower or 

micro-level give rise to properties and behaviour 

of more course-grained entities at a higher or 

macro-level, but the latter are not obviously 

predictable from the former. At the highest level, 

there is one macro-level entity consisting of the 

whole system. This phenomenon of macro-level 

properties and behaviour arising out of micro-level 

properties and behaviour, without being 

immediately apparent from them, is known as 

emergence, a fundamental property of complex 

systems (see e.g. Bar-Yam 1997; Holland 1998).  

As argued by Stolk et al. (2007) a general 

methodology is needed to derive macro-level 

properties and behaviour from individual micro-

level properties and behaviour in complex system 

simulations, combining the strengths and avoiding 

the limitations of both mathematical modelling and 

of computer simulation as existing so far. Such a 

methodology is the Emergent Models 

methodology developed by Stolk (2005) and also 

described by Stolk et al. (2003), which is outlined 

in Section 2. This methodology can also be applied 

to the inverse problem of deriving micro-level 

properties and behaviour from macro-level 

properties and behaviour. 

2. THE EMERGENT MODELS 

METHODOLOGY 

In order to combine the strengths of the 

mathematical and simulation approaches to 

scientific discovery, while avoiding their 

respective limitations, the Emergent Models 

methodology uses computer simulations to study 

how models of macro-level properties and 

behaviour of a complex system emerge from the 

properties and behaviour of the micro-level 

components of the system. This methodology 

consists of building multi-agent simulations (e.g. 

Holland 1998; Ferber 1999), with agents at 

different levels modelling micro-level and macro-

level components of a complex system.  

In practice, we often have the inverse problem: 

data on properties and behaviour of a macro-level 

entity composed of micro-level entities are 

available, and we would like to discover micro-

level properties and behaviour of the composing 

entities. This is important to gain insight in the 

working of a complex system. In the present work 

this problem is addressed, focussing on genetic 

regulatory networks, where it is of tremendous 

importance to be able to discover exactly how they 

produce observed phenomena, such as genetically 

determined illnesses.  

Various methods can be used to discover emergent 

macro-level models from micro-level simulations, 

or underlying micro-level models from macro-

level models or observed data. If the variables of 

the model equations are already known from 

theoretical considerations and only unknown 

parameters need to be estimated, standard linear or 

non-linear regression techniques can be used. If the 

important variables also have to be discovered, 

more advanced techniques are needed, such as 

evolutionary algorithms or other machine learning 

methods. 

The present work examines the inverse problem of 

deriving properties, behaviour, and interactions of 

individual agents from higher-level agent 

properties and behaviour, using genetic 

programming algorithms (see e.g. Koza 1992) to 

construct interacting individual agents, together 

composing a genetic regulatory network, from 

higher-level phenotype observations in Pisum 

sativum. 

We use genetic programming to discover micro-

level models from observed data, as it is an all-

purpose method with sufficient flexibility to be 

applicable to many interesting cases. Genetic 

programming can be applied to many problems, as 

it performs a search based on trial and error, 

2000



randomly mutating and recombining building 

blocks of possible solutions to obtain a best 

solution to a problem. The building blocks of 

solutions are provided by the programmer and can 

be defined in any desired way.  

3. GENETIC PROGRAMMING 

A genetic algorithm transforms a population of 

individual objects, each with an associated value of 

fitness, into a new generation of the population, 

using the principle of survival and reproduction of 

the fittest and analogues of biologically occurring 

genetic operations such as crossover (sexual 

recombination) and mutation (see e.g. Holland 

1975; Koza et al. 1999). In its basic form a genetic 

algorithm consists of the three steps of 

initialisation, generation, and result designation 

(Koza et al. 1999, p. 21-22), as described in the 

algorithm in Table 1. 

Table 1. A genetic algorithm. 

1  Initialisation 

Randomly create an initial population of 

individuals. 

2  Generation 

Iteratively perform the following substeps until 

the termination criterion has been satisfied: 

a) assign a fitness value to each individual using 

the fitness measure for the problem; 

b) select one or two individuals from the 

population with a probability based on 

fitness; 

c) create individuals for the new population by 

applying genetic operations to these 

individuals with specified probabilities: 

i.   reproduction: copy the selected individual 

to the new population; 

ii.  crossover: create new offspring 

individuals for the new population by 

recombining parts of two selected 

individuals at a randomly chosen crossover 

point; 

iii. mutation: create one new offspring 

individual for the new population by 

randomly mutating randomly chosen 

positions of one selected individual. 

3  Result Designation 

Designate an individual (e.g. the best-so-far 

individual) as the result of the genetic 

algorithm. 

Genetic programming is an extension of genetic 

algorithms in which the genetic population 

contains computer programs or mathematical 

functions to solve problems (Koza et al. 1999). A 

genetic programming search for solutions of a 

problem starts with an initial population of 

functions composed of operators and terminals 

appropriate to the problem. The operators are 

frequently merely standard arithmetic and logical 

operations. The terminals typically include the 

external inputs to the program or function as 

variables, and may also include constants and zero-

argument functions. During the search, individuals 

representing possible combinations of operators 

and terminals are mutated and recombined, until a 

good solution is obtained. 

A well studied problem in genetic programming is 

the symbolic regression problem, in which a 

function is sought that best approximates given 

data (see e.g. Koza 1992; Luke 2002). To solve 

this problem genetic programming works with a 

population of functions, which are represented as 

trees of arithmetic operators and terminals, as 

shown in Figure 1. In the initialisation step of the 

genetic programming algorithm a number of such 

trees is constructed at random. In the generation 

step operators of reproduction, crossover and 

mutation are applied. 

Reproduction operates on one individual computer 

program or function selected with a probability 

based on fitness and makes a copy of the function 

for inclusion in the next generation. Crossover 

operates on two parental functions selected with a 

probability based on fitness and creates one or two 

new offspring functions consisting of parts of each 

parent. In the tree representation crossover means 

randomly selecting and exchanging subtrees of 

both parents, as illustrated in Figure 1. The 

offspring is inserted into the next generation. 

Mutation operates on one parental function 

selected with a probability based on fitness and 

creates one new offspring function to be inserted 

into the next generation. In the mutation operation 

a point is randomly chosen in the parental 

function. The subtree rooted at the chosen 

mutation point is deleted from the function, and a 

new subtree is randomly grown. 

Thus, genetic programming can find a function 

approximating given data, by using building 

blocks defined by the programmer to construct 

functions combined with a measure for 

determining how the data are approximated by a 

particular function. In the present work the data are 

observed data from biological experiments and the 

functions to be discovered describe micro-level 

models of genetic regulatory networks. 

2001



 

Figure 1. Tree representation of functions and the 

crossover operation (Luke 2002). Before 

crossover, the left hand function is 

𝐹 𝑥, 𝑦 =  𝑥 × 𝑦 + (𝑖𝑓 𝑥 ≤ 𝑦 𝑡ℎ𝑒𝑛 3.2 𝑒𝑙𝑠𝑒 0.4) 

and the right hand one 

𝐺 𝑥, 𝑦 = 6.2 × (𝑥 + (𝑦 − 𝑥)).  

After crossover, the left hand function is 

𝐻 𝑥, 𝑦 =  𝑥 +  𝑦 − 𝑥  + 

(𝑖𝑓 𝑥 ≤ 𝑦 𝑡ℎ𝑒𝑛 3.2 𝑒𝑙𝑠𝑒 0.4). 

 

4. APPLICATION TO GENETIC 

REGULATORY NETWORK MODELS 

To make clear what a genetic regulatory network 

is, consider that multi-cellular organisms consist of 

many cells containing the same set of genes. Yet 

these cells are very different, because the genes are 

not expressed in the same way in each of them. 

Cell architecture and behaviour are determined by 

gene products, not the genes themselves. Genes 

can regulate the production of gene products by 

other genes in such a way that not all genes are 

expressed in all cells all the time (Ptashne & Gann 

2002). A set of genes and gene products, together 

with their regulatory interactions, constitutes a 

genetic regulatory network. A model of such a 

network describes interactions between DNA, 

RNA, proteins, and small molecules in an 

organism, through which gene expression is 

controlled (De Jong 2002). Various formalisms 

have been proposed to model genetic regulatory 

networks, including directed graphs, Bayesian 

networks, Boolean networks and their 

generalisations, stochastic master equations, 

ordinary and partial differential equations, 

qualitative differential equations, stochastic master 

equations, and rule-based formalisms (De Jong 

2002, p. 69). These formalisms have in common 

that gene expression and gene product levels are 

represented as nodes, and their interactions as links 

in a network. 

For example, in a Boolean network (Kauffman 

1993; De Jong 2002) the state of a gene is 

described by a Boolean variable with value 1 or 

𝑡𝑟𝑢𝑒 for an active gene (gene products present) 

and value 0 or 𝑓𝑎𝑙𝑠𝑒 for an inactive gene (gene 

products absent). Interactions between genes are 

represented by Boolean functions calculating the 

state of a gene resulting from activation and/or 

inhibition by other genes. When the evolution of a 

Boolean network is calculated during a number of 

time steps, an attractor -steady state or state cycle- 

is typically reached. 

Differential equations have also been widely used 

to model genetic regulatory networks (De Jong 

2002, p. 77-89). Levels of gene products are 

modelled more realistically than in Boolean 

networks, as real values. Regulatory interactions, 

such as activation or inhibition, between gene 

products are modelled by rate equations.  

In the same way as a genetic regulatory network, a 

biochemical network models interactions in an 

organism between molecules that are not directly 

related to its genes. A genetic or biochemical 

network consists of interacting elements and can 

be considered a complex system. In a genetic 

regulatory network the micro-level consists of 

DNA, RNA, and protein molecules, interacting 

with each other in excitatory or inhibitory ways 

(Bower & Bolouri 2001). The macro-level is that 

of the organism's phenotype as determined by the 

expression of its genes.  

Therefore, a genetic or biochemical network can 

be simulated in a straightforward way as a multi-

agent simulation, representing genes and gene 

products as interacting agents on the micro-level. 

These interacting agents model a genetic and/or 

biochemical network, which can describe the 

properties and behaviour at a higher level of a cell, 

an organ, or a whole organism.  

If parts of such a network are relatively 

autonomous subsystems or modules related to 

specific functions in the organism (for example a 

biochemical clock mechanism), these modules can 

in turn be described as agents whose properties and 

behaviour give rise to those of the whole organism. 

In this case there are three levels, a micro-level of 

2002



molecules, an intermediate level of modules, and a 

macro-level of the whole organism.  

Now, given a set of macro-level data about the 

phenotype, can we find a genetic regulatory 

network with a pattern of activity explaining the 

phenotype data of the whole organism or its 

organs? This problem was solved by conducting 

computational experiments with models of genetic 

regulatory networks regulating branching in 

garden pea (Pisum sativum). Genetic regulatory 

network models were automatically discovered to 

fit data collected in biological experiments. The 

data used described effects on the pea phenotype 

caused by mutations of the genes thought to 

regulate branching. 

5. EXAMPLE: BRANCHING IN PISUM 

SATIVUM 

A model of a genetic network regulating branching 

in pea, formulated in the context of a biological 

research project described by Harding (2003), is 

schematically presented in Figure 2(a), showing 

relationships between genes, gene products, 

signals, and phenotype. The model was developed 

to explain experimental data on the branching 

phenotype of several root-shoot grafts, a root of 

one genotype being grafted to a shoot of the same 

or a different genotype. The experiments also 

included grafts of one root with two shoots, one 

with a different and one with the same genotype as 

the root. Similarly, two roots could be grafted to a 

single shoot to get a two-root graft. 

In Figure 2 the phenotype of a plant is described 

by the level of branching inhibition 𝑠𝑖. A plant 

with wild type root and scion has by definition a 

branching inhibition of 1. Smaller values of 

branching inhibition imply more branching. It has 

been demonstrated that genes Rms1, Rms2, Rms3, 

Rms4 and Rms5 play a role for the control of 

branching in Pisum sativum (Weller et al. 1997; 

Beveridge et al. 2003). Harding’s (2003) model 

describes relationships between variables 

representing presence or absence of these genes in 

roots and shoots, as well as levels of gene products 

regulated by these genes in root and shoot, of 

intermediate signalling products and of branching 

inhibition. 

It uses algebraic equations with variables 𝑅1, 𝑅2, 

𝑅3, 𝑅4 and 𝑅5 representing presence or absence of 

genes Rms1, Rms2, Rms3, Rms4 and Rms5 

respectively in the root; variables 𝑆1, 𝑆2, 𝑆3, 𝑆4 

and 𝑆5 represent presence or absence of the same 

genes in the shoot. The corresponding levels of 

gene products in the root are denoted in the 

equations and in Figure 2 by 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 

and those in the shoot by 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠5. 

Genes are represented by discrete values, only 

taking values 0 (gene absence) or 1 (gene 

presence). Gene product levels are represented by 

continuous variables with any value greater than or 

equal to 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      (a) model as described by Harding (2003)               (b) computationally discovered model (Stolk 2005) 

 

Figure 2. Genetic regulatory network determining branching in Pisum sativum. 

 

branching inhibition (si) 

totalrs 

s1 

s5 

s2 

s4 

rs 

r1 

r5 

r2 

r3 

r4 

upward 

signal 

downward 

signal 

s3 

branching inhibition (si) 

totalrs 

s1 

s5 

s2 

s4 

s3 

rs 

r1 

r5 

r2 

upward 
signal 

2003



Intermediate quantities 𝑟𝑠 and 𝑡𝑜𝑡𝑎𝑙𝑟𝑠  are 

computed from gene product levels and can be 

interpreted as levels of signals. Gene product 

levels are determined by the presence or absence 

of the corresponding producing gene, as well as 

activation or inhibition by other gene product 

levels. In addition, gene product levels in one 

organ (root, shoot, or cotyledonary shoot) depend 

directly only on gene product levels in the same 

organ and are not directly influenced by gene 

product levels in different organs. Any influence 

from other organs occurs only indirectly through 

signals. Arrows in Figure 2 represent an activation 

effect and block arrows an inhibition effect of one 

gene product on another one.  

It was hypothesised that a genetic programming 

algorithm could automatically discover alternative 

genetic regulatory network models from the 

observed data, as presented by Harding (2003). To 

the extent that the automatically discovered model 

would be different from the original model, 

conclusions could be drawn about uniqueness of 

and possible alternatives to the original model. 

In computational experiments genetic regulatory 

networks regulating branching in pea were 

discovered using genetic programming, starting 

from observed phenotype data. Inputs for the 

genetic programming algorithm consisted of 

variables (gene presence, gene product levels, and 

signals), constants, and functions relating these. 

The algorithm constructs possible models by 

randomly mutating and recombining variables, 

constants and functions. It selects models from a 

population of models to minimise a fitness 

measure reflecting the deviation of model 

generated outputs from results as measured in 

biological experiments.  

The fitness measure used was the sum of 

deviations of model results from observed data for 

the value of branching inhibition, for 74 grafts 

with different genotypes of roots and shoots and 

consequently with different observed levels of 

branching inhibition. Details of the exact fitness 

measure are given by Stolk (2005). Output 

consisted of models with a good fit to observed 

data, with equations for branching inhibition, gene 

product levels and signals. One model found by 

the algorithm is represented in Figure 2(b), where 

the arrows correspond to equations of the model. 

As an example, the equation for 𝑠2 is represented 

by the genetic programming algorithm as in Figure 

3. This model is one of many models with a good 

fit found by genetic programming and is presented 

here because it has a straightforward interpretation. 

Automatic discovery as examined here is blind to 

meaningfulness and selection of meaningful 

models depends on interpretation by researchers. 

The discovered model has a fitness value of 0.625, 

comparable to the fitness value 0.543 of Harding’s 

(2003) model. These fitness values correspond to 

average deviations of model results from 

experimental results in the order of 1 %. 

 

(a)                                  (b) 

Figure 3. Equations for 𝑠2 in Figure 2(a) and 2(b). 

Inhibition function 𝐼𝑛ℎ is defined as  

𝐼𝑛ℎ 𝑥 = 2 1 + 𝑥  

The models discovered by genetic programming in 

this experiment are comparable to Harding's 

original model in complexity. Some features of the 

original model appear in the discovered models, 

but there are also interesting differences. For 

example, in the original model branching 

inhibition 𝑠𝑖 has an inhibitory feedback effect on 

gene product 𝑠2. In the model found here the 

feedback effect of branching inhibition is replaced 

by an effect of 𝑠4 and 𝑠5 on 𝑠2. In the original 

model 𝑠4 and 𝑠5 also have an effect on 𝑠2, but this 

effect is indirect, through 𝑡𝑜𝑡𝑎𝑙𝑟𝑠 and/or 𝑠𝑖. 
Further, the feedback from shoot to root appearing 

in the original model is lacking in the discovered 

model, as 𝑠2 no longer has an effect on 𝑟2. 

Thus, models are possible that approximately 

explain the observed data without assuming two 

feedback effects appearing in the original model, 

and by relying on direct effects of genes and their 

products. It would be interesting to compare 

predictions of both the original and the newly 

discovered models for not yet conducted biological 

experiments, and to carry out those experiments 

for which different models predict different 

branching inhibition values. 

6. CONCLUSIONS 

In conclusion, using the Emergent Models 

methodology, in this case implemented by making 

use of genetic programming, we can find models 

of genetic regulatory networks satisfying 

constraints specified by the programmer and 

optimising fit to observed data. Any constraint 

could be imposed in principle, and it is important 

to justify constraints to be used by other arguments 

 ×
2 

S2  ×  
 

s4 s5 

 ×
2 

S2  𝐼𝑛ℎ  
 

 si 

2004



than purely empirical ones. Realistic constraints 

should be developed from scientific knowledge. 

Computer-assisted model discovery as used in the 

present work does not replace the difficult job of 

building an accurate scientific model. It simply 

makes the job easier by using a genetic 

programming algorithm to find appropriate 

solutions based on the imposed constraints. 

Arbitrarily defined constraints will only lead to 

meaningless results. Realistically defined 

constraints will possibly lead to usable results. 

Thus, physical, chemical and biological realism 

has to be built in by specifying suitable constraints. 

Genetic programming is not a panacea for 

automatically finding solutions, but a tool for 

computer assisted discovery with predominantly 

heuristic value. It has the advantage that it forces a 

scientist to make assumptions explicit. Given 

explicit assumptions about the set of allowed 

solutions, incorporating physical, chemical and 

biological realism, as well as information from 

other sources, intuition, etc., genetic programming 

can search 'allowed solutions space' to find good 

solutions, given the imposed constraints. This 

makes it a powerful and flexible tool to assist in 

scientific discovery. For example, a useful 

application of automatic discovery of this type 

could be to point the way to new experiments to 

discriminate between different models that would 

otherwise be compatible with available data. 

7. REFERENCES 

Bar-Yam, Y. (1997), Dynamics of Complex 

Systems, Perseus Books, Reading, MA. 

Beveridge, C.A., J.L. Weller, S.R. Singer, and 

J.M.I. Hofer (2003), Axillary meristem 

development: budding relationships 

between networks controlling flowering, 

branching, and photoperiod responsiveness, 

Plant Physiology, 131, 927–934. 

Bower, J.M., and H. Bolouri (eds) (2001), 

Computational Modeling of Genetic and 

Biochemical Networks, MIT Press, 

Cambridge, MA. 

De Jong, H. (2002). Modeling and simulation of 

genetic regulatory Systems: a literature 

review, Journal of Computational Biology 

9(1), 67–103. 

Ferber, J. (1999), Multi-Agent Systems: An 

Introduction to Distributed Artificial 

Intelligence, Addison-Wesley, Harlow. 

Harding, E.A. (2003), Computational Analysis and 

Molecular Physiology of the Branching 

Regulatory Network in Pea, BSc Honours 

Thesis, University of Queensland, Brisbane, 

Australia. 

Holland, J.H. (1975), Adaptation in Natural and 

Artificial Systems, University of Michigan 

Press, Ann Arbor, MI. 

Holland, J.H. (1998), Emergence: From Chaos to 

Order, Oxford University Press, Oxford. 

Kauffman, S.A. (1993), The Origins of Order: 

Self-Organization and Selection in 

Evolution, Oxford University Press, New 

York. 

Koza, J.R. (1992), Genetic Programming: On the 

Programming of Computers by Means of 

Natural Selection, MIT Press, Cambridge, 

MA. 

Koza, J.R., F.H. Bennet III, D. Andre, and M.A. 

Keane (1999), Genetic Programming III: 

Darwinian Invention and Problem Solving, 

Morgan Kaufmann, San Francisco, CA. 

Luke, S. (2002), ECJ: An Evolutionary 

Computation and Genetic Programming 

System, retrieved 2 January 2005, from 

http://cs.gmu.edu/~eclab/projects/ecj/docs/. 

Okubo, A., and S.A. Levin (eds) (2001), Diffusion 

and Ecological Problems: Modern 

Perspectives, 2
nd

 ed, Springer, New York. 

Ptashne, M., and A. Gann (2002), Genes and 

Signals, Cold Spring Harbor Laboratory 

Press, Cold Spring Harbor, NY. 

Stolk, H.J. (2005), Emergent Models in 

Hierarchical and Distributed Simulation of 

Complex Systems, PhD Thesis, University 

of Queensland, Brisbane, Australia. 

Stolk, H., K. Gates, and J. Hanan (2003), 

Discovery of emergent natural laws by 

hierarchical multi-agent systems, paper 

presented at IEEE/WIC International 

Conference on Intelligent Agent 

Technology, Halifax, Canada, October. 

Stolk, H.J., M.P. Zalucki, and J. Hanan (2007), 

Subpopulation agents emerge from 

individual agents in metapopulation 

simulations, paper presented at 

MODSIM07, Christchurch, New Zealand, 

December. 

2005




