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EXTENDED ABSTRACT 

Weeds are ecologically and economically 
disastrous. Invasive species in general are 
considered the greatest cause of global biodiversity 
loss after habitat destruction, and agricultural 
weeds cost the Australian economy $4 billion 
annually on average. 

Weed eradication is difficult. Managers must 
operate with limited budgets and search costs can 
increase as weed density decreases. Even if all 
plants are successfully removed, a seedbank may 
persist, leading to future outbreaks. Thus complete 
eradication is often an unrealistic target and the 
question becomes one of how much control is 
enough. The decision of what level of management 
resources to invest must not rely solely on 
management costs, but also take into account plant 
population dynamics in the context of a stochastic 
environment. 

Here we examine ongoing management of a 
contained annual weed with an established 
seedbank, which as a “sleeper” weed may yet 
escape and cause harm. Using stochastic dynamic 
programming, we find the optimal management 
effort of controlling the weed population, trading 
off expected costs of escape versus costs of 
searching and removal. 

The optimal removal effort increases non-linearly 
with the density of emerging plants until 
management becomes futile at high population 
densities. Most of the state space nevertheless 
recommends complete removal of emergent plants. 
The solution is most sensitive to population growth 
rate, the escape probability function and the 
relative costs of escape and management.  

Our simple model leads to valuable insights for the 
ongoing control of a sleeper weed. In our study we 

have assumed that immediate eradication is 
elusive. Nonetheless, continued long-term 
management may gradually deplete the seedbank 
and allow the possibility of eradication; thus the 
management time horizon (i.e., the length of the 
control program) can influence the optimal 
strategy. The net costs of management versus 
escape are also important whereas population 
dynamics – in this case the relentless growth of a 
sleeper weed’s seedbank – become more important 
over the long-term.  

It is therefore important to include both economics 
(costs of management and escape) and biology 
(population dynamics and escape probability) in 
seeking optimal weed control strategies.  
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1. INTRODUCTION  

Invasive species constitute one of the greatest 
threats to global biodiversity (Sala et al. 2000), 
impacting ecosystem structure and function and 
altering disturbance regimes (Mack and d’Antonio 
1998). Invasive plants reduce biodiversity and 
ecosystem productivity as well as having 
detrimental effects on ecosystem services to 
herbivores and humans (DiTomaso 2000). 

The economic costs of invasive species are 
similarly grave. Although the rising number of 
biotic invasions can be linked to increased global 
trade (Westphal et al. 2007), the worldwide costs 
of invasive plants, animals and microbes have been 
estimated at US$1.4 trillion, or 5% of global GDP 
(Pimentel et al. 2001). The economic cost of 
weeds on natural and agricultural systems within 
Australia has been estimated at AU$3.5-4.5 billion 
(Sinden et al. 2004). This creates an economic as 
well as environmental imperative to develop sound 
weed management strategies.  

Conservation biology and applied ecology can 
benefit enormously from the application of 
decision theory, which facilitates the integration of 
biology, costs and strategy options within a 
transparent optimisation framework (Possingham 
et al. 2001). For example, conservation actions 
such as weed control often operate with limited 
budgets. Management costs are often overlooked 
in analyses directing conservation strategies; 
however, explicit consideration of costs within a 
decision-theoretical framework can have dramatic 
changes on which management strategies are 
recommended (Baxter et al. 2006).  

Dynamic optimisation studies of invasive plant 
systems have yielded valuable insights into 
management. Wu (2001) show that expected crop 
yields are higher when dynamic rather than static 
optimisation of agricultural weed control is used; 
and sequential tactical decisions taking 
stochasticity into account can maximise the 
economic benefits of integrated weed management 
(Jones et al. 2006). Optimisations of agricultural 
weed control often use economically important 
measures such as increased crop yields (e.g., 
Bosnic and Swanton 1997; Wu 2001) or 
discounted profits (Pandey and Medd 1991). 
Profits can be difficult to define for non-
agricultural weeds, however, so that approaches 
which minimise expected costs (Sells 1995, Regan 
et al. 2006), or maximise some conservation 
measure within a fixed budget constraint (Taylor 
and Hastings 2004), may be more adaptable to 
both economically and ecologically important 
weeds. 

In this paper we consider the optimal management 
of an annual weed. We assume the weed has been 
detected and confined within a single location, but 
is a “sleeper” weed with the potential to spread 
elsewhere with severe ecological or economic 
impacts (Cunningham and Brown 2006). Removal 
of every plant may be prohibitively expensive 
whereas failing to control the infestation would 
increase the likelihood of its escape. Given a 
certain density of the weed, managers must 
therefore decide on the appropriate level to 
remove. Our objective was to investigate how the 
optimal levels of weed removal may be affected by 
differences in costs, management time horizon, 
population dynamics and in the relationship 
between density and escape probability. While the 
components of our model are relatively simple, 
integrating them in an optimisation framework can 
yield novel insights into weed management. In 
doing so we demonstrate an approach that is 
uncomplicated yet revealing. 

2. METHODS 

Our optimisation depends on three components. 
First we develop a model of weed abundance 
dynamics and control, which determine the 
transition probabilities between abundance states. 
Next we describe plausible escape probability 
functions based on abundance levels. The 
objective of the optimisation is to minimise the 
expected overall costs (rather than to achieve 
eradication). Therefore, we also include 
management costs, and the costs of the weed 
escaping beyond the contained zone. We now 
describe these components, followed by details of 
the optimisation itself.  

2.1. Population Dynamics 

We used a simple linear model for annual weed 
dynamics by considering the seedbank (St) and 
emergent plants (“adults”, At) at time t: 

St+1 = b(1–g)St + (1–m)ρabAtf(rt), (1) 

At+1 = gSt+1 .    (2) 

where b is over-winter survival in the seedbank; g 
is the emergence rate of new plants; ρ is the return 
rate of seeds to soil; a is the adult survival rate 
between emergence and seed production; and f(rt) 
is a seed production function that depends on rt, a 
random environmental signal in year t. We assume 
that seed production responds linearly to 
environmental conditions, i.e., f(rt) = srt., where s 
is the number of seeds produced per adult plant 
under average environmental conditions. The 
decision variable, m, is the proportion of the adult 
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plants removed. As we consider both agricultural 
and non-agricultural weeds we deliberately leave 
the details of removal vague, ignoring more 
sophisticated or integrated approaches commonly 
available to farmers (seedbank fumigation, crop 
rotation etc.). Note that equation (1) assumes 
100% detection of adult plants; however, it may be 
very costly to approach this perfect level of 
detection; see 2.3 below. Combining equations (1) 
and (2) allows us to eliminate the seedbank term, 
expressing the dynamics in terms of the adult 
plants only:  

At+1 = b[1 – g + (1 – m)gρasrt]At = λAt. (3) 

Thus the population model, while allowing for 
stochasticity, maintains a simple linear form (for 
example ignoring density-dependence) which 
readily allows analysis of its deterministic 
analogue (e.g. Caswell 2001). 

2.2. Escape Probabilities  

We assume that the escape probability Pe depends 
on seed production of ν = asrtAt, (= asAt under 
mean conditions) i.e., Pe = Pe(ν), and consider four 
alternative functional forms: 

P1. Pe = 1 – (1 – p1)ν    (4) 
(derived from the probability of a single 
seed escaping, p1);  
 

P2. Pe = ν/(ν + k)    (5) 
(representing a density-dependent escape 
probability; Pe = 0.5 when ν = k);  
 

P3. Pe = νζ/(νζ + kζ)   (6) 
(sigmoidal density-dependent escape 
probability assuming successful escape 
requires some minimum propagule 
density; again Pe = 0.5 when ν = k; we set 
the shape parameter ζ = 4);  
 

P4. Pe = ( ) πν−− 4
P11 p   (7)  

(assuming escape only from the perimeter 
of a circular infestation of constant 
density, where pP is the probability of a 
single seed escaping in this scenario). 

To make the different probability forms 
comparable we first fixed k = 100000 (i.e., the 
seed density at which Pe = 0.5 in expressions P2 
and P3), and then solved expressions P1 and P4 for 
Pe(k) = 0.5, to find the values of p1 and pP.  

2.3. Costs 

We consider three different costs: an escape cost, 
and fixed and efficiency-dependent removal costs. 
We ignore economic discounting by assuming that 
the costs will increase annually at the same rate. 
We assume that the escape cost Ce is fixed, 
representing for example the loss of weed-free 
trade status if containment of an agricultural weed 
has failed, or some impact valuation of an 
ecological weed (e.g. cost of setting up a national 
control program).  

For weed removal, we consider two cost 
components: a fixed removal cost per individual 
removed κ, and also an “efficiency cost”, Ceff, 
which reflects the extra effort involved in 
removing the last few weeds from an infestation. 
Extra search costs at low densities may have a 
pronounced effect on management success (Baxter 
et al. in press). We assume that this cost increases 
exponentially to some maximum amount (χ) 
required to remove the last individual (if desired; 
recall that managers decide what proportion m to 
remove). This gives a total efficiency cost of 

( )( )γ−γ−−

−=

γ− −
γ
χ

=χ= ∫ AAm
A

mAAx

x eedxeC 1
eff

, (8) 

for removing mA out of A weeds. We set the 
exponent γ = ln 2, implying a doubling of search 
costs with each successive plant removed as 
eradication is neared. The decision to remove mA 
plants therefore results in overall expected costs of  

CePe([1–m]ν) + κmA + χ(e–[1–m]Aγ – e–Aγ)/γ. (9) 

2.4. Optimisation 

We used stochastic dynamic programming (SDP) 
to find the optimal proportion of plants to remove 
in order to minimise the total expected costs (9) 
incurred over a fixed management time horizon 
(length of control program). SDP provides a means 
of finding optimal strategies which take into 
account the states of a system over time (for 
ecological examples see Mangel and Clark 1988 
and McCarthy et al. 1999).  

We discretised the state-space into adult 
abundance “bins” increasing geometrically by a 
factor of 1.05. The edges of the bins were [0.976, 
1.025, 1.076, …, 968227, 1016638], so that mean 
abundances were given by the 284 geometric 
midpoints [1, 1.05, 1.11, …, 992137]. We then 
assigned transition probabilities between states, 
depending on the chosen removal level, m. We 
encapsulated population dynamic stochasticity as 
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the response of seed production to environmental 
fluctuations. Standardising the environmental 
variability as rt ~ N(1, c2), where c is the 
environmental coefficient of variation, gives  

At+1 ~ N(μ, σ2), where   (10) 

μ = (1–m)bgρasAt + bAt(1–g), and  (11) 

σ = (1–m)bgρasAtc.   (12) 

Therefore the probability of moving from 
abundance state A to Z, given removal level m, is  

Pr(A  Z | m) = Φ(Z(+)) – Φ(Z(–)),  (13) 

where Φ(x) is the cumulative probability of x on a 
N(μ, σ2) distribution; Z(+)and Z(–) define the upper 
and lower bounds of the abundance bin containing 
Z; and μ and σ are defined as above (11, 12). The 
optimal management effort m* in state At is the 
value of m that minimizes the expected future costs 
J of reaching each subsequent state: 

( ) ( )
( )( )
( ) ( )∑ →++

−+
χ+κ=

Z

ee

m

mZAtZJ

AasmPC
AmCmAtAJ

|Pr1,

1
,,,

*

eff  (14) 

and  

J*(A, t) = minm[Jm(A, t)].   (15) 

This algorithm also requires setting a final cost for 
each state A, which we set equal to CePe(sA). 

2.5. Implementation and analysis 

As we were interested in general results, we chose 
biologically plausible parameters and adjusted 
seed production s to produce desired population 
growth rates λ (in general we assume λ = 1 for a 
sleeper weed), rather than parameterise the model 
to a particular case study. We found optimal 
management effort levels (choosing from m = 0, 
0.05, … 1) as a function of weed abundance for the 
four escape probability functions. We tested the 
sensitivity of these results to changes in population 
parameters, management costs and management 
time horizon.  

3. RESULTS AND DISCUSSION 

3.1. General results  

For all escape probability functions, the optimal 
strategy over most of the range of abundances is to 

attempt 100% removal of adult plants (Fig. 1). In 
general, the optimal management effort increases 
with adult density, reaching 100% removal at 
moderate densities (about 500). At very high 
densities (in the order of 104-105), however, the 
cost of removal exceeds the expected escape cost 
and so total control becomes economically futile. 
Noticeably, at this “giving-up density”, the optimal 
effort drops sharply from 100% to 0% (mainly due 
to the discretisation yielding large abundance bins 
at that scale). There is therefore a range of 
abundances over which complete removal is 
recommended. This abundance range expands on 
both sides as the time horizon increases (Fig. 1), 
because the transition to an abundance state with 
higher escape probability becomes more likely 
over time. 

3.2. Effect of escape probability functions  

The general behaviour is repeated broadly for all 
probability curves, albeit with some differences 
(Fig. 1). Whereas there is little appreciable 
difference between the individual-based (P1) and 
density-based (P2) escape-probability curves, 
differences are more marked for P3 and P4.  

The sigmoid probability curve P3 reflects a 
situation where a critical propagule size may be 
necessary for establishment elsewhere, and so 
optimal management is lighter at low densities. In 
contrast, the perimeter-based escape curve P4 
(which recall has been standardised so that the 
same abundance gives 50% escape probability) has 
relatively higher escape probability at low 
densities because every plant is nearer the 
perimeter; therefore complete removal is optimal 
even at low densities. 

Figure 1. Optimal management strategies for 
different escape probability curves (eqns 4-7), 

expressed as optimal removal effort m* for each 
level of adult abundance. Results for three 

different management time horizons are shown: 
one (–––), five (– –) and twenty (–×–) years. 
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Thus the escape probability function may greatly 
affect the optimal management strategy, especially 
at low densities. In contrast, there is little 
difference in the giving-up densities (Fig. 1). 
Because all escape probabilities are close to one at 
these very high densities, the expected costs are 
close to Ce, and the management decision becomes 
dominated by the relationship between Ce and κA. 
At low weed densities, management decisions are 
primarily influenced by whether the escape 
probability is negligible (P1-P3) and therefore the 
relative values of expected escape cost and search 
inefficiency costs (Ceff) become important. At 
higher abundances, we may expect other cost 
factors and population dynamics to play a 
considerable role on the optimal management 
strategy (see 3.4 and 3.5 below).  

3.3. Sensitivity to management time horizon  

We examined the effect of time horizon on the 
optimal strategies under escape probability 
function P1, summarising the results by focussing 
on the giving-up density at high abundances and 
the (lower) density at which 50% removal first 
becomes optimal (Fig. 2). At low densities (e.g., 
seven plants), the probability of escape is low over 
a short time-frame and the increased expense of 
removal is relatively uneconomical. With a longer 
time-frame (e.g. 20 years), however, the chances 
for population recovery and eventual escape 
increase so the incentive to control is stronger and 
the 50%-removal recommendation begins at weed 
densities of less than four.  

The giving-up density, at which managers abandon 
removal due to excessive removal costs, increases 
with management time horizon (Fig. 2). At these 
high densities, the escape probability is close to 

one so the expected cost of escape is close to Ce; 
but the cost of removal is also very high so 
management becomes futile. For any given high 
density however, if no removal occurs, the 
probability (and thus expected cost) of escape 
increases over time so that managers with longer 
time horizons should choose to remove weeds, 
even if escape is unlikely within one year. 

3.4. Effect of population dynamics  

In our population model we assumed that the weed 
population is static on average (i.e., λ = 1) but that 
any population change and thus the risk of 
eventual escape is linked to environmental 
conditions. The population parameter which 
invokes most sensitivity in the model (while 
constraining λ = 1) is seedbank survival b. This 
sensitivity can be confirmed by rephrasing the 
population dynamics in a matrix model; 
perturbation analysis (Caswell 2001) shows that 
seedbank survival gives the highest elasticity 
value. Whereas this sensitivity may suggest it as a 
good population parameter to address directly (but 
see Baxter et al. 2006), we assume here that only 
adult plants can be targeted and therefore changes 
in b of ±10% yield little difference in the optimal 
management strategy (Fig. 3, left panels). At low 
weed densities, lower seedbank survival requires 
slightly more adult plant removal effort; because 
we fixed λ = 1 the reduction in b is offset by 
greater seed production s which increases the risk 
of escape.  

The optimal strategy is more sensitive to our 
assumption that the weed population is not 
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Figure 2. Sensitivity of optimisation results to the 
management time horizon, assuming escape 

probability curve P1. Lowest abundances at which 
management is futile due to weed over-abundance 
(“giving up density”; left axis) and 50% removal 
becomes optimal (“50%-mgt density”; right axis) 

are shown.  

Figure 3. Optimal management strategies for 
different seedbank survival b (left panels) and 
overall population growth rate λ (right panels), 

assuming escape probability function P1 (eqn 4). 
The parameters b and λ are adjusted to either 90% 

(upper panels) or 110% (lower panels) of their 
default values. Results for three different 

management time horizons are shown: one (–––), 
five (– –) and twenty (–×–) years. 
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growing on average (λ = 1). Unsurprisingly, a 
higher population growth rate λ demands greater 
management effort (Fig. 3, right panels). The 
increase in management is more pronounced for a 
longer time horizon, as the implications of high 
population growth are more severe over a longer 
timeframe. This highlights the importance of 
considering life-history parameters carefully in 
choosing management intervention levels. While 
our default value of λ = 1 may seem low in the 
context of invasive plants, it is reasonable for a 
sleeper weed which may maintain a static 
population for decades before its eventual escape.  

3.5. Effect of costs 

Management costs and expected escape costs have 
a pronounced effect on optimal management 
strategy. Not surprisingly, more management 
effort is required at both high and low weed 
densities if the expected escape cost Ce increases 
(Fig, 4, left); this is true for all management time 
horizons. The effects of escape cost and removal 
cost on the optimal management effort were 
almost symmetric across much of the abundance 
range (not shown). For example, a doubling of 
escape cost prescribes the same management as a 
halving of the removal cost per plant κ (loosely, 
the net incentive to remove a weed doubles in both 
cases). Reducing the cost of removal of low-
density plants (χ; Fig. 4, right) entails increased 
management at low densities as that action 
becomes more feasible. The optimal management 
strategy at upper densities is not affected. 

3.6. Caveats 

As stated above, our generalised model presents a 
much simplified case rather than a specific 
prescriptive management guide. The model should 
therefore be re-parameterised (or re-formulated) 
prior to application to particular plant species or 
functional types. For example our population 
dynamics are linear, ignoring density dependence; 
we assume simple removal (rather than other 
management actions which may effect smaller or 
larger changes in parameter values; cf. Fig. 3). 
Management actions could also be made ‘smarter’ 
by also responding to other factors in addition to 
mere abundance (which would be included in the 
SDP as system states) e.g. environmental 
condition.  

4. CONCLUSIONS 

Our optimisation approach, whilst relying on quite 
simple models, leads to valuable insights for the 
control of a sleeper weed. The relative costs of 
management versus escape are central whereas 
over the long term, population dynamics––
especially a relentlessly growing seedbank––may 
become important. The relationship between plant 
density and escape probability, which in turn 
relates to dispersal mode and surrounding land use, 
can also have considerable effects on when control 
should be implemented or abandoned. Managers 
therefore need to include both economics (costs of 
management and escape) and biology (population 
dynamics and escape probability) in seeking 
optimal control strategies. We assumed here that 
immediate eradication is elusive. Nonetheless, 
continued management over a long time may 
gradually deplete the seedbank and allow the 
possibility of eradication; the management time 
horizon is therefore important in the choice of 
optimal strategy. Overall, 100% adult plant 
removal is optimal for most densities, leading to 
the general recommendation to remove all sleeper 
weed plants unless infestation has already 
exceeded management capacity or the population 
is too low for efficient removal.  
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