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EXTENDED ABSTRACT 

Structural deterioration of drainage pipes has been 
a major concern for asset managers in maintaining 
the required performance of the urban drainage 
systems. Structural deterioration is the reduction 
of physical integrity, which can be characterized 
through structural defects such as cracks and 
fractures that are identified through condition 
assessment. Due to limited budget and the 
massive number of pipes, condition assessment 
often is carried out on a fraction of the pipe 
network using closed circuit television (CCTV) 
inspection and a condition grading scheme. The 
condition assessment identifies the serviceability 
of pipes in a scale from one to three with one 
being the perfect, two being the fair and three 
being the poor condition. 

The challenge for researchers is to use the sample 
of CCTV inspected pipes for developing 
deterioration models that can predict the structural 
condition of remaining pipes as well as the future 
condition of pipes. In this study we consider an 
ideal deterioration model, which describes that 
each particular pipe has its own structural 
deterioration curve or pattern (i.e. structural 
condition versus age) owing to a number of 
contributing factors including its design standard, 
construction method and operating condition.  

Two neural network based prediction models for 
classifying or predicting the structural 
deterioration patterns (i.e. structural conditions) of 
urban drainage pipes are developed. The inputs to 
these models are the contributing factors such as 
pipe size and pipe age, and the output is the pipe 
condition.  One prediction model uses back-
propagation neural networks (BPNN) with 
supervised learning, and the other uses 
probabilistic neural networks (PNN).  In the 
training process (or determining network weights) 
of the BPNN, a genetic algorithm was used to 
generate the initial values of network weights, 
which were then used by the back-propagation 
algorithm in order to avoid the well-known 
problem of local optimum. The PNN, on the other 
hand, does not require such a complex training 
process but uses the Parzen-Cacoullos theory to 
find the best possible approximation of 
multivariate probability density function for each 
of structural conditions to be classified by 
Bayesian rules.  A case study using BPNN and 
PNN is discussed in this paper together with the 
advantages and limitations pertaining to the 
application of the two models.  

1. INTRODUCTION 

Structural deterioration of urban drainage pipes 
has been identified as a major cause for a number 
of pipe collapses with consequences of 
interrupted services and traffic. Structural 
deterioration is the reduction of physical integrity, 
which can be characterized through structural 
defects such as cracks and fractures. On the other 
hand, hydraulic deterioration, another type of 
deterioration, is due to reduction of cross-
sectional area of pipes and an increase in surface 
roughness, which reduce the hydraulic 
conveyance of the pipes. The hydraulic 

deterioration is characterized via hydraulic defects 
such as tree root intrusions and sediment 
deposition. The ultimate result of hydraulic 
deterioration is blockage with consequences of 
flooding. 

Condition assessment of pipes for structural and 
hydraulic deterioration throughout their service 
lifetime is important for constructing a proactive 
maintenance and rehabilitation program. 
However, in the current management practice, 
due to limited budget and the massive size of the 
pipe network, only a fraction of drainage pipe 
networks is subjected to a condition assessment 
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program, which comprises two steps. The first 
step involves the inspection of pipe segments 
(defined between two pits) using direct 
observations such as closed circuit television 
(CCTV) or man-walk through. Recently adapted 
non-destructive inspection techniques (e.g. radar, 
ultrasound) which have some outstanding 
capabilities can also be used (Wirahadikusumah 
et al., 1998). However, CCTV inspection is still 
the most commonly used technique because of its 
good productivity, low cost and relative safety. 
The second step involves the interpretation of 
these CCTV observed defects by using a 
condition grading scheme to determine the 
condition state of the pipe segments at the time of 
inspection. The condition grading defines the 
changing structural and hydraulic conditions of a 
pipe throughout their service lifetime using a 
scale from one to three (WSAA, 2002) or one to 
five (WSAA, 2006) with one being perfect and 
three or five being failure.  

The challenge for researchers is to use the sample 
of CCTV inspected pipes for developing 
deterioration models that can predict the condition 
of remaining pipes as well as the future condition 
of pipes. A number of studies on deterioration 
mechanisms and deterioration models for sewers 
and drainage pipes were previously conducted. 
For example, the deterioration process was 
considered probabilistic and affected by various 
contributing factors such as pipe size and soil type 
in  Wirahadikusumah et al. (2001) and Baik et al. 
(2006). Statistical techniques such as Markov 
chain theory (Wirahadikusumah et al., 2001, 
Micevski et al., 2002), ordered probit technique 
(Baik et al., 2006) and logistic regressions 
(Davies et al., 2001b) were used in deterioration 
models for sewers and drainage pipes. 

In this study, we propose to use neural networks 
as an alternative method to the statistical 
techniques. We compare two neural networks 
based prediction models for classifying or 
predicting structural conditions of drainage pipes 
on a case study. One prediction model used back 
propagation neural networks (BPNN) with 
supervised learning, whilst the other used 
probabilistic neural networks (PNN).  In the 
training process (or determining network weights) 
of the BPNN, a genetic algorithm was used to 
generate the initial values of network weights 
which were then used by the adopted back-
propagation algorithm (BPA) in order to avoid the 
well known problem of local optimum. The PNN, 
on the other hand, does not require such a 
complex training process but depends on the 
Parzen-Cacoullos theory (Cacoullos, 1966) to find 
the best possible approximation of multivariate 

probability density functions for each of structural 
condition states to be classified by Bayesian rules. 

2.  DETERIORATION PATTERN OF PIPES 

The structural deterioration of drainage pipes and 
sewers was generally considered to experience 
three-phase development (WRC, 1983, Davies et 
al., 2001a) as shown in Figure 1. This figure 
shows how pipes change their condition over time 
represented by age from start-up phase (first 
construction) to operation phase and until they 
reach rehabilitation phase when pipe collapse will 
likely to occur if no maintenance is carried out. It 
can be noted from this figure that a threshold line, 
which is at condition three, defines the 
rehabilitation 
phase.
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Figure 1. Ideal individual deterioration model for 
structural condition (modified from Davies et al., 
2001a) 

Based on the general three-phase development of 
pipe deterioration, we consider an ‘ideal 
individual deterioration model’ where the 
individual pipe has its own deterioration curve as 
marked Pipe 1, Pipe 2,…, Pipe n in Figure 1. This 
ideal model is aimed to reflect the fact that pipes 
have different deterioration rates due to many 
contributing factors that arise from design 
standard, construction methods and operating 
conditions. Each deterioration curve can be seen 
as a deterioration pattern whose shape can be 
broadly identified when a number of points (i.e. 
inspected pipe condition) along the age axis are 
captured. This view of ‘deterioration pattern’ is 
incorporated in developing the two prediction 
models in the subsequent sections. 

3.  PREDICTION MODELS 

3.1. Back-propagation neural networks 
(BPNN) 

A back-propagation neural network (BPNN) 
using feed forward and supervised learning is 
adopted as a prediction model for modelling the 
structural condition of drainage pipes. The basic 
idea is that the BPNN learns deterioration patterns 
from a sample of CCTV inspected pipes with 
associated contributing factors and generalizes the 
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‘knowledge’ to predict a new query pipe.  The use 
of ‘feed-forward’ property is to ensure that the 
network outputs can be calculated as explicit 
functions of the inputs and the network weights, 
and thus can reduce the unnecessary complexity 
in determining the network topology, which might 
affect the classifying capability of the BPNN. The 
supervised learning is a commonly used learning 
strategy which is achieved through modifying the 
connection weights between neurons in order to 
minimize the differences (or errors) between 
observed and predicted outputs (Samarasinghe, 
2006). Back-propagation (BP) is a commonly 
used training method for the supervised learning 
strategy.  

The schematic of the BPNN is shown in Figure 2, 
which contains an input layer with input neurons 
(i.e. contributing factors), one hidden layer and an 
output layer with two output neurons.  
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Figure 2. A schematic of the BPNN 

Two output neurons with expected values in range 
[0, 1] are used because the structural condition 
takes only integer values of 1, 2 and 3 (WSAA, 
2002) in the case study. In other words, two 
output neurons are used to code three integer 
values as shown in Table 1. 

Table 1. Values of output neurons and 
corresponding condition states 

Output neurons 
1 2 Condition state 

>= 0.5 <0.5 1 
< 0.5 >= 0.5 2 

>= 0.5 >= 0.5 2 
< 0.5 < 0.5 3 

The Tansig and Logsig functions (Bishop, 1995) 
are used as activation functions for hidden 
neurons and output neurons, respectively. 
According to Bishop (1995), for a BPNN with 
one hidden layer,  the selected activation 
functions can handle most non-linear patterns. 
Over-fitting which may occur in learning process 
of the BPNN is also addressed in this study by 

using the early stopping technique (Bishop, 
1995). 

The number of neurons in the hidden layer is the 
only parameter to be identified during training 
process of the BPNN. The Levenberg-Marquardt 
(L-M), a BP training algorithm of fast 
convergence, and batch learning are used in a trial 
and error search to find the best suitable number 
of hidden neurons on the criterion of minimizing 
mean square error (MSE) between the observed 
outputs nO and predicted outputs nY  over the N 
training data as described in (1). 

2

1

1 ( )
N

n n
n

MSE O Y
N =

= −∑    (1) 

Although the L-M training algorithm would 
converge with a solution for almost any initial 
values of connection weights, the ‘good’ solution 
depends on the ‘proper’ initial values. Since the 
‘proper’ initial values are unknown, it is common 
to randomly generate initial values within a 
guessed range. Furthermore, the error surface of 
neural network problems is reportedly non-
convex and contains large number of local optima 
(Gori and Tesi, 1992). As a result, the best 
possible solution of the L-M algorithm is not 
always guaranteed.  

A genetic algorithm (GA) is used to generate the 
initial values of weights for the L-M algorithm. 
GA is considered a directed ‘global’ search 
algorithm (Goldberg, 1989) that is especially 
useful for complex optimization processes with 
many local optimum or when the analytical 
solutions are difficult to obtain (Pham and 
Karaboga, 2000). The use of GA in neural 
networks problems has proved efficiency and 
continues to increase at a faster rate in diversified 
areas (VanRooij et al., 1996, Kim et al., 2005b). 
Although GA can replace the L-M algorithm as 
an independent training method, the convergence 
of GA may take long time in the large search 
space of NN parameters. This is because, unlike 
the L-M algorithm, GA does not make use of 
local knowledge of parameter space. Therefore, a 
hybrid GA and L-M algorithm was used in the 
BPNN in this study. 

The fitness function of GA is the MSE as given in 
(1) which will be minimized in the GA training 
process. However, the reason that the 
performance of GA does not depend on the initial 
values (or seeds) is because GA randomly 
generates an array of initial values (called a 
population) which increases the chance of 
capturing the potentially good initial values. More 
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importantly, in each step toward the ‘global 
optimum’, the new population is created by taking 
the best ‘individuals’ (called elite count) from the 
old population and by creating new individuals 
using ‘genetics exchange’ (called crossover and 
mutation). This type of GA operation is more 
advantage than the ‘hill climbing’ of BP 
algorithms and thus GA is more likely to avoid 
local optimum. However, GA operators need to 
be properly chosen for maximizing performance 
of the GA. In this study, the population size and 
crossover rate are two parameters to be tried and 
the other operators, elite count and mutation rate, 
are set to default values of 2 and 0.5 respectively. 

3.2. Probabilistic neural networks (PNN) 

The foundation of the PNN approach is well 
known for a long time but the first 
implementation of the PNN was attributed to 
Specht (1990) who demonstrated how to adapt the 
attributes of neural networks and use the 
increased computation power of computers for the 
PNN to solve engineering problems (Sinha and 
Pandey, 2002, Kim et al., 2005a). Since the PNN 
is primarily based on the Bayesian classification 
rules and Parzen-Cacoullos theory, it is of interest 
to discuss them briefly. 

Consider a population G of pipes which is made 
up of 3 classes or condition states: G1, G2 and G3. 
A measurement X representing a pipe and 
consisting of p characteristics or pipe factors is 
observed for G. Our task is to develop an 
assignment rule for X that will allocate this 
observation to either G1, G2 or G3. To assist in 
defining a rule, we have access to N observations 
of which N1 are for G1, N2 are for G2 and N3 are 
for G3 (i.e. N=N1+N2+N3). Assuming that the prior 
probability that the measurement X belongs to the 
condition class i is hi, the cost associated with 
misclassifying is ci and that the true probability 
density function (PDF) of all three classes f1(X), 
f2(X) and f3(X) are known, the Bayesian rules 
classify the measurement X into the condition 
class i using (2),  

* * ( ) * * ( )i i i j j jh c f X h c f X>  (2) 

for all classes i j≠ . The misclassifying cost can 
include such costs as pipe repair costs and 
damage costs due to the consequences of pipe 
failures. However, the misclassifying cost and the 
prior probability are not considered in this study 
due to lack of data that are also observed in other 
studies (Hajmeer and Basheer, 2002).  

It is obvious that finding the true PDF for each of 
the classes is critical to the Bayesian approach. 
Since the true underlying process of each class is 
unknown, more often normal (Gaussian) 
distribution is assumed; however, the assumption 
of normality cannot always be safely justified 
(Masters, 1995). The Parzen-Cacoullos theory 
(Cacoullos, 1966) offers a robust way to estimate 
the PDF from the N observations. The PDF for a  
condition class is called a multivariate PDF as 
given in (3) and is constructed by averaging 
kernel densities or univariate PDFs of all 
observations found within the class. Among 
kernel density functions (Masters, 1995), 
Gaussian kernel density is often chosen for an 
observed pipe Xn whose measurement becomes 
the mean value and its standard deviation σ  
(smoothing parameter) must be properly selected. 

/ 2 2
1

1 ( ) ( )( ) exp
(2 )   2

TN
n n

p p
n

f
Nπ σ σ=

⎛ ⎞− −
= ⎜ ⎟

⎝ ⎠
∑ X X X XX (3)   

A network topology with four fixed layers is 
commonly used for PNN as shown in Figure 3. 
The input layer has the number of neurons, which 
are equal to the dimension p of the measurement 
X. In the pattern layer, observations of each class, 
which are called, training patterns, are clustered 
together. As can be noted from the figure, there 
are three boxes of different shapes, which 
represent three classes. The neurons in the pattern 
layer compute the exponential part of (3) and 
transfer the computed values to the summation 
layer. The summation layer then computes the 
multivariate probability of a query pipe belonging 
to each of three classes. In the output layer, the 
Bayesian classification rules are carried out to 
assign a class to the query pipe with the highest 
probability.  
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Figure 3. Topology of a PNN for three classes 
(modified from Hajmeer and Basheer, 2002) 

3.3. Evaluating prediction models 

The accuracy of a prediction model is tested by 
comparing its predicted outputs with 
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corresponding observed targets. In general, those 
that were not used in the training process are 
preferred in order to provide an unbiased and 
reliable result. The predicted output as compared 
to the observed target will always take one of four 
possible situations: (1) true negative  (TN) when 
the prediction model correctly predicts a negative 
case (i.e. pipe observed in poor condition), (2) 
true positive (TP) when the prediction model 
correctly predicts a positive case (i.e. pipe 
observed in good or fair condition), (3) false 
negative (FN) when the prediction model 
incorrectly predicts a truly negative case as a 
positive case, (4) false positive (FP) when the 
prediction model incorrectly predicts a truly 
positive case as a negative case. 

It is obvious that the FN rate is the critical 
indicator and the larger the FN rate is the poorer 
the performance of the prediction model since the 
cost incurred when a FN pipe collapses is 
substantially higher than the inspection cost for a 
FP pipe. Besides the FN rate, the performance of 
the prediction model can also be measured using 
fraction correction (FC) (Kuncheva, 2004) and 
Goodness-of-fit test using Chi-Square statistics 
(Micevski et al., 2002). The FC is a ratio between 
the numbers of correctly classified cases to the 
total cases. The Goodness-of-fit test is based on 
the null hypothesis that the classified outputs are 
consistent with the observed targets. If the Chi-
square value 2

Mχ  of a prediction model as given 
in (4) for prediction models is larger than the 
critical Chi-square value 2

0.05,dfχ , then the null 
hypothesis is rejected.  

23
2

1

( )i i
M

i i

O P
P

χ
=

−
= ∑     (4) 

where iO and iP are the number of pipes that are 
respectively observed and predicted in condition i. 

4.  CASE STUDY 

This study used a dataset supplied by the City of 
Greater Dandenong in Victoria, Australia. A 
sample of 417 pipe segments (each defined 
between two pits) was CCTV-inspected during 
the period 1999-2007, which is equivalent to 
3.4% of the total length. However, the inspection 
program was of a single snapshot type, in that 
none of the pipes has received a second 
inspection. Nine pipe factors were provided as 
given in Table 2. The ‘location’ factor refers to 
pipes buried under street, under easement, under 
reserve and under nature strip. The ‘soil’ type 
refers to clay and mix soil around pipes. The 
‘moisture’ factor which refers to dry and wet 

condition (McManus et al., 2004), were inferred 
from the depth factor. The structural condition of 
individual pipes was graded into three condition 
states with one being good, two being fair and 
three being poor as per Sewer Inspection 
Reporting Code (WSAA, 2002).  

Table 2. Input factors used in the study 

Input 
factors 

Description 

Size Scale (225 to 1950 mm) (e.g. 600) 
Age Scale (0 to 65 years) (e.g. 45) 
Depth Scale (0 to 4.83 m) (e.g. 2) 
Slope Scale (0 to 22.85%) (e.g. 5) 
Tree-count Scale (1 to 22) (number of trees 

around pipe) (e.g. 2) 
Hydraulic 
condition 

Ordinal (1-3) (e.g. 2) 

Location Nominal (1-4) (e.g. 1) 
Soil type Nominal (0-1) (e.g. 0) 
Moisture 
index 

Nominal (0-1) (e.g. 1) 

The supplied dataset was randomly split into train 
and validation dataset of 75% and 25% 
respectively for use with the PNN. For the BPNN 
prediction model, the supplied dataset was 
randomly divided into train dataset, validation 
dataset and test dataset of 60%, 15% and 25%, 
respectively. The validation dataset was used for 
early stopping technique in order to avoid the 
over-fitting (Bishop, 1995). 

If a query pipe has the information as given 
within the brackets in Table 2, then what will be 
the structural condition of this particular pipe? 
This question can be answered by predicting the 
structural condition of this pipe using the two 
prediction models developed.  

5.  RESULTS AND DISCUSSION 

The computational tasks for BPNN and PNN 
based prediction models were carried out using 
the MATLAB toolboxes.  

5.1. Training prediction models 

For the BPNN prediction model, the suitable 
number of hidden neurons for one-hidden layer 
BPNN was searched using the L-M algorithm and 
minimizing MSE of train dataset. The results are 
given in Figure 4 where 18 hidden neurons appear 
to be the best based on MSE values on train and 
validation datasets. As for the GA operators, the 
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suitable population size and crossover rate were 
found to be 230 and 0.8, respectively, as can be 
seen in Figure 5.  
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Figure 5. MSE changes on train dataset with two 

GA operators 

For the PNN prediction model, a smoothing 
parameter (σ ) of 0.5 was chosen since other 
values resulted in poorer predicting accuracy. 

5.2. Discussion of model performance  

The comparison of classification accuracy 
between two prediction models on train and test 
datasets is given in Table 3. As can be seen from 
the table, two prediction models appear to be 
suitable for structural deterioration of drainage 
pipes as substantiated by the acceptance of the 
Goodness-of-fit tests. For the case study, the 
critical value of Chi-square statistics is 5.99 for 2 
degree of freedom and 95% confidence limit.  

Although the PNN prediction model is ranked 
first in terms of FC and FN in the train dataset, its 
performance for the test dataset is ranked second. 
The BPNN with GA came second in the train 
dataset but becomes ranked first for the test 
dataset. The BPNN without GA shows the lowest 
performances in both train and test datasets.  

Table 3. Comparison of predictive performance  
 

Data- Model Training FN FC Chi-

Set methods rate 
(%) 

rate 
(%) 

square 
2
Mχ  

without 
GA 

23 70.2 2.95 

BPNN With 
GA 

19 79.4 2.44 Train 

PNN  10 91.6 1.97 
without 
GA 

32 65.1 4.16 

BPNN with 
GA 

22 73.5 3.28 Test 

PNN  26 67.3 4.21 

The lower performance of the BPNN without GA 
compared to the BPNN with GA is 
understandable because of the problem of local 
optimum which is consistent with previous 
studies (Bennell et al., 2006, Yu et al., 2006). On 
the hand, although the performance of PNN is 
slightly poorer than the BPNN with GA in the test 
dataset, the fact that it outperformed the BPNN 
with and without GA in the train dataset may 
suggest a preferred choice of PNN over the 
BPNN in this study because of the simplicity in 
the construction of the PNN model. The lower 
performance of the PNN in the test dataset could 
be associated with the use of all training patterns 
in the train dataset. Some training patterns may be 
redundant and thus the PNN becomes 
oversensitive to the training patterns and exhibits 
poor generalization capacities to the unseen 
patterns (Mao et al., 2000). Further study on 
methods to eliminate the redundant patterns is 
recommended. Finally, the predictive 
performances of BPNN and PNN were found 
better than those of statistical models using 
multiple discriminant analysis and ordered probit 
technique in another study by Tran (2007). 

However, the high FN rate and the above average 
FC rate of the PNN and BPNN based prediction 
models imply the probability of incorrect 
classification and thus field expert opinions 
should be sought for double checking the 
predicted results before committing any repair 
actions. 

6.  CONCLUSION 

In this paper, two neural network based prediction 
models (BPNN and PNN) for predicting structural 
deterioration of urban drainage pipes were 
developed on the basis that structural 
deterioration is affected by many contributing 
factors such as pipe size and pipe location. The 
developed prediction models were applied to a 
case study using a sample of CCTV inspected 
pipes and corresponding contributing factors. The 
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two prediction models were compared in terms of 
predictive performance on a dataset that was not 
used for training. The comparison was based on 
three scalar performance measures; namely 
fraction correction (FC), false negative (FN) and 
Goodness-of-fit test. The results show that the 
two prediction models are suitable for modelling 
structural deterioration of drainage pipes. The 
PNN outperformed the BPNN in the train dataset 
but its performance was lower in the test dataset. 
However, the high FN rate and the above average 
FC rate of the PNN and BPNN based prediction 
models imply the probability of incorrect 
classification and thus the expert opinions should 
be sought to reconfirm before committing any 
repair actions. As expected, the use of GA 
improved the training efficiency and the 
generalization for the BPNN since it can avoid the 
local optimum. 

As for development issues of the prediction 
models, the PNN based model appear simpler to 
build but the use of all training patterns may 
reduce its predictive performance and thus a 
further investigation of this issue is suggested. 
Although the BPNN model shows a better 
performance in the test dataset, it requires time 
and effort for selecting optimal parameters such 
as the number of hidden neurons, initial values of 
weights and dealing with the problem of local 
optimum. 
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