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EXTENDED ABSTRACT 

 

In this paper, we use Self-Organising Maps 
(Kohonen 1989) together with a helical encoding 
of time. The maps can therefore learn the periodic 
variation in input data, which may be annual, 
weekly, or daily. We have implemented this 
technique in software, and have tested it by 
demonstrating how it can be used to predict 
missing data values. 

Self-Organising Maps are a form of neural 
network allowing unsupervised learning. In this 
work, we use a 2-dimensional network. Given a set 
of data, the neural network learns the distribution 
of data points, and provides a mapping from the 
set of data points to the neural network. The 
mapping has the property that similar data points 
map to nearby neurons in the network. 

Figure 2. Self-Organising Map after learning 
sample data for 132 months. Light squares indicate 
high values, and dark squares indicate low values. 

Circles indicate neurons corresponding to data 
points, colour-coded by month. The time sequence 

is anticlockwise, with January at the top centre. 

We are particularly concerned with learning the 
distribution of periodic data, where the period may 
be a day, a week, or a year. Each point in time 
therefore has an associated phase angle 
corresponding to the position within the daily, 
weekly, or annual cycle. We allow for these cycles 
by using the helical encoding of time illustrated in 
Figure 1. If the time t corresponds to the data point 
(di1, …, di∆), and a phase angle of θ, then we use 
the vector (di1, …, di∆, t, sin θ, cos θ ) for training 
the Self-Organising Map. 

We can predict missing data values by 
interpolating within the network. This technique is 
stochastic, since the predicted value will depend on 
random aspects of the self-organisation process. 
However, averaging a number of predictions 
reduces this random element. In reporting the 
performance of our prediction technique, we use 
an adjusted error which makes allowance for the 
standard deviation of the stochastic prediction. 

 

We study three data sets, one reporting the 
incidence of drowning in young children in 
Arizona between 1989–99, one measuring rainfall 
at a site in Thailand between 1999–2001, and one 
measuring the temperature in Canberra for five 
days in 2007. Averaged over three experiments, 
the adjusted error for our prediction technique was 
18%, which was better than the 22% resulting 
from simple interpolation. This shows that, with a 
helical encoding of time, the generalisation 
capabilities of the Self-Organising Map can indeed 
be used to predict periodic phenomena. 

Figure 1. Helical encoding of time for three 
complete cycles. 

By self-organising to map this extended data set, 
the network not only learns the distribution of data 
points, but also temporal trends in the data. Figure 
2 shows the result of learning a sample data set.  
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1. SELF-ORGANISING MAPS For the work reported in this paper, α decreases 
exponentially from 1 down to 0.01 over 100 
training cycles, while the neighbourhood radius r 
also decreases from the size of the network down 
to 6. This fairly high final radius ensures that the 
neural network learns a smoothed version of the 
data, which can be used to generalise the patterns 
found. This generalisation in turn helps to predict 
missing data values. The grey squares in Figure 2 
indicate the weight values of the neurons in the 
network, and the smooth transitions in shades of 
grey illustrate the smoothing effect of a large final 
radius (the circles in Figure 2 indicate data items 
dj, with each data item placed on top of its best-
matching neuron Ni). 

The Self-Organising Maps developed by Kohonen 
(1989) provide a popular form of unsupervised 
learning (Ritter et al. 1992, Hecht-Nielsen 1990). 
They have been applied to areas as diverse as 
speech recognition (Beale and Jackson 1990), 
pattern recognition (Kohonen 1990), ballistic 
movements of robot arms (Ritter and Schulten 
1989), aerodynamic flow modelling (Hecht-
Nielsen 1988), and image processing (Dekker 
1994). 

A Self-Organising Map is a δ -dimensional neural 
network which learns the patterns within a set of 
∆-dimensional data (where δ ≤ ∆). This learning is 
robust in the face of missing data values and even 
the occasional erroneous data value. The choice of 
a 2-dimensional network, as in Figure 2, assists in 
visualisation of the results. 

In order to obtain the best performance of the Self-
Organising Map, we use the biasing mechanism 
developed by Desieno (Hecht-Nielsen 1990, 
Dekker 1994). For learning purposes, the 
calculation of the best-matching neuron Ni to a 
data item dj is biased by bi = 4 – 1000 fi, where fi is 
an estimate of the frequency at which the neuron 
Ni has been chosen previously. For the 16×16 
network which we use, fi is normally about 1/256, 
so that the bias bi is normally close to zero, unless 
the neuron Ni has been chosen unusually often. 

Each neuron Ni in the network holds a ∆-
dimensional weight vector wi. The learning process 
involves repeatedly finding the best-matching 
neuron Ni to a data item dj and moving the weights 
of selected neurons towards dj. Specifically, 
neurons in a neighbourhood of radius r around Ni 
are moved. The new weights  of neurons in the 
neighbourhood are given by: 

kw′
2. HELICAL ENCODING OF TIME 

We are particularly concerned with data from a 
time series containing a periodic element, where 
the period may be a day, a week, or a year. The 
time can be expressed as a position t between the 
start and the end (for example, as the number of 
seconds since the start of the time series) and a 
phase angle θ. The phase angle represents the 
position in the daily, weekly, or annual cycle. We 
represent each time by a triple (t, sin θ, cos θ), 
although in practice we scale all three coordinates 
to be in the range 0…1. 
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where D is the distance in the neural network 
between neuron Nk and neuron Ni, and α is a 
variable which decreases during learning. Figure 3 
illustrates the process. This learning mechanism 
results in network where similar data items map to 
nearby neurons. 

 

The triples (t, sin θ, cos θ ) correspond to points 
along a helix, such as that shown in Figure 1. The 
progression of time combines circular motion (of 
varying phase angle θ) with linear progress of the t 
component. 

To the triples (t, sin θ, cos θ ) we add the numerical 
data items. If the time (t, sin θ, cos θ ) corresponds 
to a ∆-dimensional set of data values (di1, …, di∆), 
then we get our Self-Organising Map to learn the 
(∆+3)-dimensional set of data values: 

(di1, …, di∆, t, sin θ, cos θ ) Figure 3. Self-Organising neural network update 
method. 

By self-organising to learn the patterns in this data 
set, the Self-Organising Map not only learns the 
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distribution of data points, but also the temporal 
trends in the data. eadj x

yx σ+−
= , (2) 

We perform the learning using a 2-dimensional 
Self-Organising Map. Figure 2 shows the result of 
learning the data described in Section 4. Circles 
show the mapping of data items to the network, 
and arrows connect consecutive data items. 

Single predictions will be within this error at least 
68% of the time, and the average of two 
predictions will be within this error more than 80% 
of the time. As we increase the number of 
predictions being averaged, the chance of the 
average being within eadj of the true value 
approaches 100%. Since the learning process results in network 

where similar data items map to nearby neurons, 
consecutive data items tend to map to nearby 
neurons, as do data items with the same phase 
angle. Consequently, the neural network shown in 
Figure 2 illustrates a clearly visible annual cycle. 
Variability in the data changes during the year, 
being high for May to September (at the bottom of 
Figure 2), and low for January to March (at the top 
of Figure 2). 

4. FIRST EXPERIMENT 

For our first test of the prediction process, we use 
data on the number of children aged 0–4 killed by 
drowning in Arizona during 1989–1999 (Arizona 
Department of Health Services 2005). Prediction 
of this kind of data can be used to target prevention 
campaigns and therefore reduce the frequency of 
these tragic events. Figure 4 illustrates the data set. 
The frequency of drowning is generally highest 
during the summer, as would be expected. In 1989, 
it was high also during the spring, and in 1994 the 
peak was delayed until autumn. However, most of 
the variation from year to year seems to be 
essentially random. The Self-Organising Map 
shown in Figure 2 results from learning this data 
set. 

3. PREDICTION 

We can use our Self-Organising Map to predict 
missing data values. Figure 2 shows that the 
sequence of data points forms a consistent 
trajectory around the network, and we can 
interpolate using this trajectory. To predict missing 
data values, we find the neurons in the network 
corresponding to: 

• the data point just before the missing one; To test the prediction process, the data points for 
December 1991 and June 1995 were not included 
in the data set used for training, but were used to 
test prediction. The actual value for December 
1991 was 1, and the prediction process returned a 
mean of 0.99 and a standard deviation of 0.07, 
giving an adjusted error of 8%. For June 1995, the 
actual value was 5, and the prediction process 
returned a mean of 3.87 and a standard deviation 
of 0.22, giving an adjusted error of 27%. 
Averaging over both predictions gives an overall 
adjusted error of 18%. 

• the data point just after the missing one; 
• the data point with the same phase angle 

(e.g. the same month) as the missing one, 
but just before it; and 

• the data point with the same phase angle 
(e.g. the same month) as the missing one, 
but just after it. 

We then average the positions of these four 
neurons. Our predicted value is taken from the 
weights inside the neuron at the average position. 
We will see in the remainder of the paper that this 
performs better than simply averaging the four 
data values in the above list. 

 

This prediction process is stochastic: the actual 
value produced varies randomly, depending on 
details of the Self-Organising Map learning 
process. Consequently, the prediction process 
should be performed several times, and an average 
of multiple predictions used. 

For our experiments, we report an adjusted error, 
which takes the stochastic element into account. If 
the true value is x, and the prediction process 
produces a distribution of values with mean y and 
standard deviation σ, then we report the adjusted 
error eadj as: 

 Figure 4. Number of drownings by month and 
year among children 0–4 years old in Arizona. 

Data from Arizona Dept of Health Services (2005). 
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Table 1. Wat Chan rainfall data (Kuraji et al. 
2003) compared to Southern Oscillation Index 
(SOI) data. The June-00 data was not part of the 
training dataset, but was used to test the neural 
network prediction. Note that data for some 
months is missing, and some low values may be 
erroneous. 

For comparison, averaging the four neighbouring 
values (previous month, next month, same month 
in previous year, same month in next year) gives 
an average error of 33%. Averaging only the same 
month for the next and previous year gives an 
average error of 10%, but as we will see, the latter 
approach is not always effective. 

5. SECOND EXPERIMENT Month and 
Year 

Rainfall 
(mm) 

SOI 

January-99 7 15.36 
February-99 10.5 8.53 
March-99 25.5 9.61 
April-99 134 18.72 
May-99 215.5 0.66 
June-99 200.5 0.39 
July-99 125.5 4.93 
August-99 198.5 2.57 
September-99 214 –0.11 
October-99 70.5 9.06 
December-99 18.5 13.2 
January-00 0 4.54 
February-00 27 13.2 
March-00 19.5 9.39 
April-00 47.5 17.25 
May-00 202.5 3.97 
June-00 181 –5.57 
July-00 128.5 –4.16 
August-00 168.5 5.1 
September-00 105.5 10.09 
November-00 1.5 22.23 
December-00 1.5 8.27 
January-01 1.5 8.51 
February-01 0 12.18 
March-01 78 6.33 
April-01 0 1.16 
May-01 267.5 –9.86 
June-01 69.5 2.47 
July-01 105.5 –3.7 
August-01 259.5 –8.6 
September-01 165 1.49 
October-01 218.5 -2.18 
November-01 26 8.11 

Our first experiment raises the question as to 
whether a richer set of data values improves 
prediction. To investigate this, our second data set 
consists of rainfall data for 1999 to 2001 at the 
location in northern Thailand shown in Figure 5 
(Dairaku et al. 2000, Kuraji et al. 2001, Kuraji et 
al. 2003). We combined this with values of the 
Southern Oscillation Index (SOI) as shown in 
Table 1. A number of months are missing from 
this data set, and some low values may be 
erroneous. The network learning must be robust in 
the face of these problems. 

The inclusion of Southern Oscillation Index (SOI) 
data provides additional explanatory power: high 
rainfall occurs in the rainy season, particularly 
when the value of the SOI is low. 

The data for June 2000 was excluded from the 
training data set, and the Self-Organising Map was 
used to predict the rainfall for that month. The 
actual value was 181 mm, and the neural network 
returned an average of 167.2 with a standard 
deviation of 8.7, i.e. adjusted error of 12%. If the 
SOI data was not included in the training data set, 
this adjusted error rose to 15%, indicating that 
supplementary data in the training data set does 
assist the Self-Organising Map in learning the 
patterns in the data. 

For comparison, simply averaging adjacent data 
values gave an error of 17% (if four values were 
used), or 25% (if only two values were used). 

 
Figure 5. Location of Wat Chan rain gauge, Mae 
Chaem watershed, upper Chao Phraya river basin, 
northern Thailand. Photo from Kuraji et al. (2003).  
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Table 2. Summary of adjusted errors for 
prediction with the Self-Organising Map, for the 
three experiments reported here, compared with 

errors for simple interpolation. 

6. THIRD EXPERIMENT 

The final experiment used hourly temperature data 
from Canberra for the period 1:00 pm, 14 May 
2007 to 1:00 pm, 18 May 2007 (Australian Bureau 
of Meteorology 2007). Barometric pressure was 
used as the additional variable to provide 
additional explanatory power. 

Data Set 

Self-Org. 
Map 

prediction 

Simple 
interp. 
(four 

values) 

Simple 
interp. 
(two 

values) 

First 
experiment 18% 33% 10% 

Second 
experiment 12% 17% 25% 

Third 
experiment 23% 15% 31% 

Overall 
Average 18% 22% 22% 

The data for 5:00 am, 17 May and 5:00 pm, 16 
May was excluded from the training data set, and 
the Self-Organising Map was used to predict the 
temperature for those times. The actual 
temperatures were 7.2 ºC for the chosen morning 
and 19.2 ºC for the chosen afternoon. 

The neural network returned an average of 8.8 ºC 
(standard deviation 0.6 ºC) for the morning and 
17.6 ºC (standard deviation 1.0 ºC) for the 
afternoon, i.e. adjusted errors of 31% and 14% 
respectively. For comparison, simply averaging 
adjacent data values gave errors of 23% and 7% (if 
four values were used), or 51% and 11% (if only 
two values were used). 

7. DISCUSSION 

Table 2 shows the average adjusted errors for the 
predictions in the three experiments reported here, 
compared with the errors for simple interpolation. 
On average, prediction with the Self-Organising 
Map performs better than simple interpolation, 
even though it is a stochastic process. 

Figure 6 shows the Self-Organising Map after 
learning, which provides a good visualisation of 
the changing temperatures over the given period. 
The deviation from the main cycle corresponds to 
the onset of rain just after midnight on the morning 
of 18 May. For the first experiment, with data from child 

drownings in Arizona, one of the simple 
interpolation techniques did indeed provide a 
better prediction than the Self-Organising Map, but 
the other performed much worse. For the third 
experiment, with temperature data from Canberra, 
the relative performance of the two simple 
interpolation techniques was reversed. One of the 
two interpolation techniques is based on adjacent 
times and the same time in adjacent years or days, 
while the other is based on the adjacent years or 
days only. Neither simple interpolation technique 
is consistently as good as the prediction provided 
by the Self-Organising Map. 

 

The ability of the Self-Organising Map to predict 
missing data values results from its capacity for 
generalisation, together with the helical encoding 
of time which we have used, and the way in which 
the Self-Organising Map preserves topological 
relationships. 

Figure 6. Self-Organising Map after learning 
Canberra temperature data. Light squares indicate 
high temperatures, and dark squares indicate low 

temperatures. Circles indicate neurons 
corresponding to data points, colour-coded by 
hour. The time sequence is anticlockwise, with 

midnight at the top centre. 

In addition, the Self-Organising Map with our 
helical encoding of time also provides an excellent 
way of visualising the periodic variation in the 
variables being studied, as in Figure 6. 

In future work we intend to fine-tune the neural 
network to improve its predictive power. 
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