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EXTENDED ABSTRACT 

The MSM-BIGMOD model of the River Murray 
in South Eastern Australia is a comprehensive flow 
and salinity routing model, used to assess the 
impacts of potential changes in river management 
on river flow and salinity levels. The modelling 
suite consists of a combination of five models that 
have been developed over a period of several 
years. Sensitivity analysis of the model is 
particularly important, given that decisions are 
made about management of the River Murray 
based on outputs from the model. The large 
number of model inputs and parameters arising 
from the inclusion of the many tributaries, 
storages, drains, and diversions pose a challenge 
for traditional sensitivity analysis methods, such as 
one-at-a-time parameter perturbation methods.  

The Management Option Rank Equivalence 
(MORE) method of sensitivity analysis is an 
innovative method of sensitivity analysis 
developed especially for use with complex models 
used for decision-making. The MORE method 
assesses the sensitivity of management decisions 
based on model output, to changes in the model 
inputs, in order to provide a sensitivity analysis in 
the decision context. The MORE method is based 
on the premise that potential management options 
are ranked based on model output. The analysis 
then attempts to locate the Rank-Equivalence 
Boundary (REB), which is the surface in parameter 
space where the management options become 
equal in rank. In this implementation the MORE 
method uses a genetic algorithm to search for the 
minimum and maximum normalised Euclidean 
distances between the calibrated model parameter 
vector and the REB  in parameter space. 

This research applies the MORE method to MSM-
BIGMOD in order to assess the sensitivity of the 
choice between two different salt interception 
schemes (SIS), in different reaches of the river, to 
variations in a multiplication factor of the travel 
time and dead storage at different flows, for the 9 
reaches of the river, shown in Figure 1.  

 

Figure 1. Section of the River Murray analysed for 
sensitivity to travel time and dead storage 
parameters (MDBC 2002) 

The sensitivity results obtained found a minimum 
normalised Euclidean distance to the REB equal to 
0.783, which, given a uniform variation in the 
multiplication factor across the 18 parameters, was 
equivalent of varying the travel time and storage 
for each reach by ±18.5% of their original values. 
Within this variation there would be no change in 
the management decision, indicating that the 
decision is not highly variable. The results also 
found a maximum Euclidean distance to the REB 
of 3.453, which was 90% of the maximum 
possible distance from the calibrated model 
parameter vector. This indicates that there are very 
few solutions which are guaranteed to change the 
management decision. Over 99% of the parameter 
space lies in a region where it is uncertain whether 
the management decision will change, indicating 
that there is considerable variation in sensitivity in 
different directions in parameter space, and that 
further sensitivity analysis may be useful.  

By providing information on possible variations in 
management decisions based on variations in 
parameters, the MORE method is shown to be an 
effective method of sensitivity analysis for use in 
decision-making.  
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1. INTRODUCTION 

Sensitivity analysis is recognised as a key 
component of model development (Saltelli et al. 
2000). Not only can sensitivity analysis form a part 
of model calibration, informing the modeller of 
which parameters will have considerable impact on 
the model when altered, but it can also allow 
identification of ways that the model can be 
simplified, thus helping to avoid over-
parameterisation (Tarantola et al. 2002). Further, it 
can help modellers to identify any unexpectedly 
strong dependencies on parameters which should 
not be highly influential, allowing correction of the 
model (Saltelli and Scott 1997).  In integrated and 
environmental modelling, it is often the case that 
uncertainties are poorly understood, while taking 
large samples or repeating experiments is often not 
possible (Norton 1996). In this case, where there 
may also be limited resources, sensitivity analysis 
provides a way for modellers and decision-makers 
to identify key parameters, and allocate resources 
towards further data collection appropriately.  

As the size of a model increases, simultaneously 
with the complexity of its interactions, sensitivity 
analysis becomes increasingly important. In the 
case of large and integrated models, non-linearities 
and non-monotonicity are common place, and 
model outputs may not always be intuitive. Thus, 
reliable and thorough sensitivity analysis is the key 
to informing modellers of the internal workings of 
the model. Well established techniques for 
sensitivity analysis, such as Fourier Amplitude 
Sensitivity Testing (FAST) (Cukier et al. 1978; 
Saltelli and Bolado 1998), and the method of  
Sobol’ (Sobol' 1993; Sobol' 2001) use analysis of 
variance to assess the contribution of the variance 
in a single parameter to the variance in the output, 
while methods such as Morris one-at-a-time factor 
screening (Morris 1991), attempt to identify 
unimportant parameters such that further analysis 
can be simplified.  

In the case where a model is being used for 
decision making, it is important to determine 
whether the model outputs from alternative 
management options are significantly different 
from one another, given the possible variation in 
the model parameters. In this instance, a new type 
of sensitivity analysis is required. The 
Management Option Rank Equivalence (MORE) 
method (Ravalico et al. 2006) is a new method of 
sensitivity analysis, which endeavours to provide 
an assessment of sensitivity of the management 
decision to variation in the model inputs and 
parameters. The method uses parameter bounding 
techniques and optimisation to determine the 
minimum change in model inputs that may cause a 
change in the preference ranking of potential 
management options. This research is an 

application of the MORE method to the MSM-
BIGMOD modelling suite for flow and salinity in 
the River Murray. 

The MSM-BIGMOD modelling suite is a 
comprehensive flow and salinity model of the 
River Murray in South-Eastern Australia. 
Beginning with the inflows from Dartmouth Dam, 
the model incorporates tributaries, storages, weirs, 
irrigation and urban diversions, salt interception 
schemes, drainage diversions, wetlands and flood 
runners. The model operates through a process of 
hydrological routing, which involves dividing the 
river into reaches, each with different flow 
parameters, and variations due to the different 
inputs (MDBC 2002). 

The modelling suite is a combination of five 
models: MSM, a monthly simulation model that 
computes irrigation demands, resources 
assessment and water accounting, MODFLW, 
which converts monthly values computed in MSM 
into daily input files for use in BIGMOD, 
GETDVM, which creates monthly inputs from 
MSM for BIGMOD, BIGMOD, which is a daily 
flow and salinity routing model from the Hume 
Dam to Lake Alexandrina, and BIGARKW, which 
is used to analyse the results of MSM and 
BIGMOD. Of these, BIGMOD and MSM are the 
key calculation models, and can be run separately 
or sequentially using outputs from MSM as inputs 
to BIGMOD (MDBC 2002).  

The large number of inputs and parameters in the 
modelling suite, and their potential interactions, 
prohibits standard single parameter variation as a 
method of sensitivity analysis. Further, use of the 
model in decision-making and the importance of 
the decisions made, make MORE sensitivity 
analysis an ideal option. The BIGMOD model is 
selected in this research as a starting point for 
sensitivity analysis of the entire modelling suite.  

2. MORE METHOD OF SENSIVITY 
ANALYSIS 

The Management Option Rank Equivalence 
(MORE) method of sensitivity analysis was 
developed specifically for use with models used in 
decision-making. It provides an assessment of the 
sensitivity of a management decision to changes in 
model inputs. The aim of the method is to assist 
decision-makers to assess the suitability of a 
particular model in making specific management 
decisions, given known or approximated parameter 
uncertainties, as well as providing assistance in 
selecting between different management options. 

In a situation where a decision-maker is selecting 
between two or more potential management 
options, choices are often made through ranking of 
management choices, with the option that is ranked 
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highest selected to be put into practice, and the 
options with lower rankings discarded. These 
rankings may occur on the basis of one or several 
different model outputs.  

The situation that is of interest to the decision-
maker is that where changes in model inputs cause 
a change in the ranking of potential management 
options, such that the decision previously made 
would be altered. In the case where a decision-
maker is considering two options, the question of 
changes in the rank of management options can be 
considered by investigating different regions of the 
parameter space. The parameter space can be 
separated into three regions; one where the rank of 
the management options will alter, one where they 
will not, and a boundary region, separating the two 
previous regions, where the ranks of the two 
options are equal. It is this Rank-Equivalence 
Boundary (REB) that is of interest to decision-
makers, as it represents the boundary of a change 
in management option. Given a large number of 
parameters, and a model which may be non-linear 
and non-monotonic, as is the case with many 
integrated models, locating the rank equivalence 
boundary is problematic. The MORE method of 
sensitivity analysis overcomes this problem by 
searching the REB for the parameter vector that is 
the minimum distance (Dmin) from the calibrated 
model parameter vector (x), and that which is the 
maximum distance (Dmax) from the calibrated 
model parameter vector, with parameter ranges 
normalised to [0,1]. Dmin and Dmax are then used to 
characterise the REB by separating the parameter 
space into three distinct regions.  

The first of these, S, is identified as a hypersphere 
with radius Dmin and centre x. This represents the 
region of parameter space over which the 
parameter vector can vary, without altering the 
ranking of management options. The second of 
these, C, is identified as the region of parameter 
space outside of the hypersphere of radius Dmax, 
and represents that region of parameter space 
where it is certain that there will be a change in the 
rank of management options. The final region, U, 
which is represented by the volume within the 
hypersphere of radius Dmax and centre x, but not 
including S, is an uncertain region – where we are 
unsure whether the ranking of management options 
will change or not. Thus, based on potential 
uncertainties in the model inputs, a decision-maker 
can assess whether their choice of management 
option is sufficiently robust, or whether there 
needs to be further data collection, or review of the 
model being used before a decision can be made.  

The MORE method also provides a decision-
maker with information regarding changes in 
sensitivity in different model directions in 
parameter space, or different combinations of 

parameter changes. If the parameter space is 
viewed as the entire feasible region of model 
parameters, then the feasible space has unitary 
volume, since the parameter ranges are normalised 
to [0,1]. This space is divided into three subsets 
that each have their own volume. The volume of 
the inner sphere, S, gives us the fraction of the 
total parameter space where the management 
decision will not change, the volume of the region 
C gives the fraction of the feasible space where the 
decision is certain to change, and the volume of 
region U gives the fraction of the feasible space 
that is uncertain. A large volume of the region U 
indicates a significant change between the 
minimum and maximum distances from the 
calibrated model parameter vector to the REB. 
This in itself indicates that rather than being 
uniformly sensitive, the sensitivity of the 
management decision is variable in different 
directions in parameter space. In other words, 
while some combinations of individual parameter 
changes may not affect the decision significantly, 
other combinations, which may have a similar 
combined value, are likely to have a substantial 
effect. The volume of the set U can be used as an 
indicator to determine whether more information 
on the location of the REB is required. Where U is 
small, the sensitivity can be considered to be 
reasonably uniform, and resultantly further 
analysis is not required. However, where U is large 
it is desirable to undertake further analysis on the 
model. 

In the situation that the hyperspheres bounding set 
S and set C do not fall entirely within the 
parameter space, the volume is too complex to 
calculate exactly. Due to the high dimensionality 
of the parameter space, and the potential 
inaccuracy of Monte-Carlo approximation 
techniques over the considerable search space, a 
hyper-cube with the same volume and centre as the 
hypersphere in question is used to approximate the 
volume which lies within parameter space.  

Further information gained from the method can 
assist a decision-maker in determining the required 
tolerances for the model parameters. The minimum 
distance from the calibrated model parameters to 
the REB indicates the smallest combined change in 
parameter values before the management decision 
made becomes incorrect. Thus if a decision-maker 
can ensure that the combined parameter 
uncertainties would not lead to a combined change 
in model parameters equal to or greater in 
magnitude than Dmin, then they can be assured that 
their decision is robust.   
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3. MSM-BIGMOD FLOW AND SALINITY 
MODEL 

The MSM-BIGMOD flow and salinity model is a 
comprehensive model of the River Murray in 
South Eastern Australia. The model includes 
irrigation and urban diversions from the river, salt 
interception schemes and drainage diversions, 
storages and weirs on the river, wetlands and flood 
runners, as well as the tributaries. Historical 
rainfall and evaporation data are used to calculate 
gains and losses from river reaches and storages or 
weirs.  

Flow routing in the river is based on hydrological 
routing, with the downstream flow of each reach 
calculated as: 
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where qout is flow out of the reach, qin is flow into 
the reach, Sstart is the reach storage at the start of 
the day, Send is the reach storage at the end of the 
day, d is the distributed diversion, E is the Net 
evaporation rate, A is the surface area of the reach, 
Lhf are the high flow losses from each reach and 
Lcm are the continuous monthly losses. The storage 
in each reach is considered to be a function of 
upstream flows, and the corresponding storage 
values for each flow are contained within a lookup 
table as inputs into the model. For each reach, 10 
different flow values are stored with corresponding 
travel time values, particular to that reach. Using 
the travel times and dead storage for each reach, 
the reach storage can then be derived (MDBC 
2002).  

Salinity within the model is treated as being 
contained within parcels of water. The flows 
upstream and downstream of the reach or sub-
reach under consideration are determined prior to 
salinity calculations for each time step. A water 
balance is used and the movement of the parcels of 
water with particular salinity concentrations is 
tracked, providing the overall salinity of the water 
within a particular reach. Lakes are assumed to be 
fully mixed, and weirs may be modelled in the 
same way as a normal reach, or may be fully 
mixed. Water lost or gained due to evaporation or 
rainfall will concentrate or dilute the salinity as 
appropriate, however, water lost due to high flow 
or constant monthly losses does not affect salinity 
(MDBC 2002).  

Changes to the Murray River are assessed by 
running the model over a benchmark period from 
1891 to 2000 for flow modelling and 1975-2000 
for salinity modelling, under current conditions, as 
well as under the proposed conditions. The flow 

and salinity outputs from the two different runs are 
compared to assess the impact that the proposed 
changes would have on the current condition of the 
river over a considerable period of time.  

4. ANALYSES 

The BIGMOD modelling suite is currently used to 
assess the impact of changes in flow and salt 
interception into the river on the salinity levels in 
electrical conductivity units (EC) at Morgan, in 
South Australia. The model is run twice over the 
benchmark period, once with the current data, and 
once with the altered data, and the change in EC at 
Morgan assessed.  In this study BIGMOD was 
used to assess the impact of two management 
options, involving the implementation of a salt 
interception scheme (SIS) in the river reach 
between Lock 3 and Lock 2. One option 
considered locating the SIS upstream of 
Woolpunda, while the other option considered an 
SIS downstream of Woolpunda. 

4.1. Distance metric 

In order to determine the distance between the 
calibrated model parameters and the REB, a 
number of distance metrics can be selected. These 
include, but are not limited to, the Manhattan (or 
City Block) distance, the Infinity Norm distance or 
the Euclidean Distance. While each of these 
measures have their advantages and disadvantages, 
the normalised Euclidean distance is selected in 
this instance, which is given by: 
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Where d2 is the normalized Euclidean distance, xi 
is the original value of the ith parameter, xi’ is the 
new value of the ith parameter, and k is the total 
number of parameters under investigation. 

Using the normalised Euclidean distance 
transforms parameter space to represent a unit 
hypercube. This also allows the sensitivity results 
to be assessed using the different properties of 
Euclidean geometry.  

4.2. Search Algorithm 

The computational efficiency and accuracy of the 
MORE method is reliant upon selection of an 
appropriate search method to locate the parameter 
vectors on the REB that are the minimum and 
maximum distance from the calibrated model 
parameter vector, x. For problems of high 
dimensionality, gradient methods tend to converge 
to local optima and can be highly dependant on the 
starting point (Elbeltagi et al. 2005). Evolutionary 
algorithms (EAs) are search algorithms that mimic 
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natural biological processes, such as evolution, in 
order to optimize an objective function. EAs have 
been found to outperform traditional mathematical 
optimisation techniques in comparative studies 
(Elbeltagi et al. 2005).  

Given the likely complexity of the REB, a genetic 
algorithm (GA) is used for this implementation of 
the MORE method. The GA is an evolutionary 
algorithm, based on Darwinian principles of 
survival of the fittest (Goldberg 1989). Each 
parameter vector is considered a chromosome, 
with each individual parameter considered to be a 
gene on the chromosome. The fitness of each 
chromosome as the problem solution is a 
combination of two measures, the distance from 
the calibrated model parameter vector to the 
solution represented by the chromosome and the 
constraint of location on the REB. The fitness is 
based first on the amount that the constraint is 
violated, with those chromosomes with the 
smallest violation considered the fittest. For 
chromosomes without constraint violation, the 
distance is evaluated, and those with either the 
minimum or maximum distance (depending on 
which search is being performed) from the 
calibrated model parameter vector are considered 
the fittest 

The GA used in this instance is real coded. Each 
gene on the chromosome contains a real parameter 
value. In order to prevent repetition of results 
through parameter inheritance, the child parameter 
value which would be inherited from the parent is 
randomly selected from a normal distribution with 
a mean corresponding to the parent value, and a 
standard deviation of one sixth the distance 
between the two parent values (Gibbs et al. 2005). 
The standard deviation is selected such that there 
will be only minor overlap (less than 0.5%) 
between the distributions generated from each 
parent chromosome. 

Elitism is incorporated within the GA, such that 
the fittest chromosome from each generation is 
preserved and included in the tournament of the 
next generation, replacing the least fit chromosome 
of the tournament winners. A mutation operator is 
also included in the GA, to increase diversity of 
the solutions. A chromosome is selected for 
mutation with a probability of 0.5. Once a 
chromosome is selected for mutation, one of the 
parameters of the chromosome is randomly 
selected to be replaced with a value randomly 
generated from the parameter distribution. 

4.3. Model Analysis 

For illustration purposes of the implementation of 
the MORE method, the model was run for a 
shortened period from April 1983 to May 1992.  

To further assist with the computational efficiency 
of running a sensitivity analysis on such a large 
model, the model has been sectioned, such that the 
analysis can be performed on the reaches of the 
model downstream of lock 5. As well as reducing 
model runtime, this reduces the number of 
parameters under investigation, making it feasible 
to run a thorough sensitivity analysis.  

The parameters selected for sensitivity analysis are 
the travel time and dead storage in the reaches of 
the river from lock 5 to lock 1, shown in Figure 1. 
There are 9 reaches in this section of the river, 
giving 18 sets of values for travel time and dead 
storage. The values of travel time and dead storage 
for each reach of the river vary based on the flow 
in the river at that particular time-step. For the 
analysis, it was assumed that the general shape of 
the relationship between flow and storage, or flow 
and travel time, is fairly well known. Hence the 
analysis was performed using a multiplier factor to 
vary the model parameters. Rather than altering 
each value individually, the values for storage or 
travel time at each flow level are multiplied by the 
same factor, which ranges between 0.1 and 10. It is 
the sensitivity of the management decision to these 
multiplication factors that is assessed. 

The management decision that is the subject of this 
sensitivity analysis is the selection between two 
potential salt interception schemes, one between 
lock 3 and Woolpunda and the other between 
Woolpunda and Lock 2. There will be different 
levels of salt removal from the two schemes and 
the management choice is which scheme should be 
implemented. The decision is based entirely on 
changes to the 95th percentile of salinity in EC 
units at Morgan over the time period considered. 
The management option that has the lower 95th 
percentile EC value will be selected. Management 
option 1 for the analysis is implementing a scheme 
between Lock 3 and Woolpunda, and management 
option 2 is implementing a scheme between 
Woolpunda and Lock 2. In both cases, there was 
assumed to be no other SISs operating in either 
reach. Using the calibrated model parameters, 
management option 1 reduces the 95th percentile 
by 21 EC and is ranked first, while management 
option 2 is ranked second, with a reduction of 16 
EC from the base case.  

The MORE method was run, varying the travel 
time and dead storage for the data nodes 
corresponding to the starting and finishing points 
of the six reaches from Lock 5 to Lock 1. For each 
of the data nodes, there are two parameters; the 
scaling factor for the travel times (t) and the 
scaling factor for the dead storage (s). All 
parameters have a calibrated value of 1, a 
minimum of 0.1 and maximum of 10. As a GA is 
used, all analyses are repeated ten times with 
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different random number seeds, in order to 
minimise the impact of any random effects 
resulting from the stochastic nature of the 
algorithm. The three best solutions are shown in 
Section 5. 

5. SENSITIVITY RESULTS 

The results for the best three runs of the MORE 
method are shown in  Figure 2 and 3 and Table 1.  

Based on the smallest value found for Dmin and 
calculating the maximum equal change in all 
parameters, the results indicate that provided all 
parameters stay within ±18.5% of their original 
values, the implementation of the SIS upstream of 
Woolpunda will remain the preferred management 
option, base on the EC outputs at Morgan. This 
indicates that the decision is quite robust in 
relation to the travel time and dead storage 
parameters. 

Despite this, the volume of set S, shown in  Figure 
3 appears very small. This is due to the 
considerable range that the parameters are tested 
over. In this analysis parameters ranges vary 
between -90% and +1000% of the original 
parameter value. The considerable parameter range 
in combination with the high dimensionality of the 
parameter space, results in smaller volumes being 
representative of large changes in individual 
parameters.  

The values found for Dmax are 90% of the 
maximum possible Euclidean distance from the 
calibrated model parameter vector to the 
extremities of parameter space. This can be seen in 
Figure 2, which also shows a comparison with the 
values of Dmin. This, in combination with the 
skewed position of the calibrated model parameter 
vector in parameter space, indicates that there is 
likely to be very little area within the parameter 
space where a change in management options is 
certain to occur. This is supported by the cube 
approximation of the volume of C, which is shown 
in Table 1 to be zero. The small volume where 
there would be a certain change of management 
option is missed by the necessary volume 
approximation.  

As shown in Table 1 and Figure 3, the volume of 
U is almost 1, indicating that almost the entire 
volume of the selected parameter space lies within 
the uncertain region. The large size of U also 
indicates that sensitivity is highly varied in 
different parameter directions. This can also be 
seen in Figure 4, which shows the individual 
normalised parameter changes for the best of the 
MORE runs. The large variation in parameter 
changes between the minimum and maximum 
variation is evident. It should be noted that the 
individual parameter changes in Figure 4 do not 

give general information about the sensitivities of 
the decision to the individual parameters. The 
changes are indicative of sensitivity to the 
parameters in only two specific directions, which 
are the direction of the minimum and maximum 
Euclidean distances, and may vary considerably in 
other different directions.  

In order to gain a better understanding of the 
different contributions of each parameter at 
different locations in parameter space it would be 
beneficial to perform further sensitivity analysis on 
the model. 

The results show that the decision of SIS selection 
is robust in relation to the travel time and dead 
storage factors in the reaches of the River Murray 
between Lock 5 and Lock 1.  
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Table 1: Numerical sensitivity results from five 
repetitions of the MORE method 

run Dmin Dmax S U C 
1 0.783 3.453 2.73E-07 0.999 0 
2 0.931 3.453 3.32E-06 0.999 0 
3 0.951 3.365 4.55E-06 0.999 0 

6. CONCLUSIONS 

The MORE method has been used effectively to 
analyse the sensitivity of the selection of an SIS, 
using the BIGMOD model of the River Murray. 
The implementation of the MORE method 
represents a new direction in sensitivity analysis 
which investigates the sensitivity of decisions 
made based on model output, which may involve 
more than one model output, rather than simply 
investigating the sensitivity of the outputs to the 
parameters individually. In this instance the 
decision of whether to implement an SIS between 
Lock 3 and Woolpunda, or Woolpunda and Lock 2 
in order to reduce salinity at Morgan was 
investigated. It was found that a reasonable amount 
of variation in the model parameters of travel time 
and storage was needed across the 9 reaches under 
investigation, before it was preferable introduce 
the SIS downstream of Woolpunda rather than 
upstream, as indicated by the original model 
parameters. 
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