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EXTENDED ABSTRACT 

Climate change is now being acknowledged in 
environmental planning strategies in Australia. 
However, there are still difficulties in linking 
strategic level responses to climate change with 
local impacts. To date, only limited research has 
been conducted in predicting the effects climate 
change may have on meeting natural resource 
condition targets at regional and local levels. 
Recently, Catchment Action Plans (CAPs) have 
been developed by Catchment Management 
Authorities in NSW. These identify a range of 
natural resource management targets that are seen 
as achievable within the next ten years. However, 
the implications of climate change in meeting 
these targets have not yet been considered by the 
CMAs.  

In this paper, we describe a modelling approach 
that we have used to develop a Decision Support 
System (DSS) for the Central West Catchment 
Management Authority (CMA) in NSW. The DSS 
will assist the Central West Catchment 
Management Authority (CMA) of NSW in 
assessing the likelihood of meeting their existing 
natural resource condition targets in the context of 
several climate change scenarios. CAP targets in 
the Central West region of NSW refer to both 
water dependent agricultural systems and high 
value ecological assets that are susceptible to 
climate change. 

We use a Bayesian network (BN) modelling 
approach in this work for several reasons. Firstly, a 
BN incorporates uncertainties by modelling 
probabilities of variable responses. Secondly, a BN 
can be built using quantitative and qualitative data 
and is easily updated with additional information, 
such as outputs from other models. Thirdly, BNs 
can be developed in a modular and somewhat 
spatially explicit fashion, which makes revision of 

the model easier, and outputs more relevant to the 
local scale. 

In consultation with stakeholders, we developed a 
conceptual model of the system with regionalised 
climate change scenarios as system drivers. This 
system representation forms the basis of the BN 
that integrates regional and local information 
sources into the DSS. Using average rainfall 
changes as an example, we show how the 
uncertainties in global and regional climate 
projections can be incorporated into probabilistic 
indications of regional climate change. We also 
show how this approach can be used to identify 
areas that are less vulnerable to impacts of climate 
change. 

In addition, we provide examples of model outputs 
that relate to the Central West CMA natural 
resource condition targets, and show how these can 
be interpreted. The importance of documenting 
within the DSS the assumptions and information 
sources used in modelling is emphasised in the 
interpretation of model outputs. We also give an 
example of how sensitivity analysis can be used to 
inform further development of the BN underlying 
the DSS. We do this by showing how a river flow 
model component has more influence over a model 
endpoint than some model components that are 
directly linked to that endpoint, and by discussing 
the limitations of the information used to populate 
the river flow model component.  

The BN used in this approach is designed to be 
updated and revised in an iterative fashion as more 
information becomes available, and the impacts of 
climate change on system responses are further 
researched. 
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1. INTRODUCTION 

Climate change is a topical research area, but there 
is still only limited information on the impacts of 
climate change at regional and local levels. This is 
partly due to the uncertainties in climate 
predictions, and the difficulties in quantifying 
system responses to any predicted change. 
However, climate change may have a large impact 
on the condition of natural resources, and it needs 
to be accounted for when local and regional natural 
resource management targets are set. 

The Central West region of NSW, and in particular 
the Macquarie River area, contains agricultural 
industries and high value environmental assets 
(including the internationally significant 
Macquarie Marshes) that depend upon water 
availability and acceptable climatic conditions 
(Hassall and Associates Pty Ltd. 1998). Research 
has been undertaken in this area to determine 
system responses to water flows or aspects of 
climate, but most of the studies to date have only 
focused on one or two system attributes (e.g. 
Kidson et al. 2000). Different studies have also 
used different climate change projections, which 
makes it difficult to relate the findings of one study 
to another. This makes it very hard for managers, 
such as the Central West Catchment Management 
Authority (CMA), to assess research and evaluate 
how climate change may impact on their local 

natural resource assets. 

Decision Support Systems (DSS) provide a 
popular and useful means for collating and 
presenting information in a user-friendly fashion, 
as well as integrating information in a modelling 
environment. DSSs are problem-based and can be 
effective vehicles for knowledge sharing as well as 
integrated assessment and modelling. If 
appropriate modelling, such as a Bayesian network 
(BN), is also used, the uncertainties in the climate 
projections as well as the system responses can be 
assessed. Exploring and quantifying uncertainties 
like this is very important when a range of possible 
changes can occur (such as a range of projected 
rainfall changes), each with a different possible 
impact on the system.  

 In this paper we present an overview of a climate 
change related BN that has been developed for the 
Central West CMA in NSW. This BN has been 
developed in the context of a DSS, and it indicates 
some likely effects of climate change on the 
regional and local natural resource targets that the 
CMA has set as management goals. We show how 
our approach can incorporate several climate 
scenarios at once, and how the uncertainties in 
climate change projections can be assessed using 
such a probabilistic model. We illustrate this 
through the interpretation of some of the DSS 
outputs. 

#S

#S

#S

#S
#S

#S

Water storages
Major waterways
Central West region
Climate projection region (subregions numbered)
Macquarie Marshes locality

#S Urban areas

80 0 80 160 Kilometers

#

#

#

Broken Hill

Canberra

Sydney

Central W est

N

EW

S

Bathurst

Carinda

Nyngan
Warren

Dubbo

Orange

Macquarie River

Bogan River

Burrendong Dam

Castlereagh River

 
Figure 1. The Central West of NSW showing regions that relate to the Macquarie River Valley that OzClim 

projections were calculated for. 1 = Upper catchment, 2 = Burrendong Dam to Dubbo, 3 = Dubbo to 
Warren, 4 = Warren to Carinda.  
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2. THE MODELLING APPROACH 

We chose a Bayesian Network approach for this 
project for several reasons. BNs present findings as 
probabilities, and they deal well with the 
uncertainty inherent in environmental systems. 
BNs can use a range of information when 
modelling a system, ranging from data to expert 
opinion (Borsuk et al. 2004). BNs can be 
developed in a modular fashion. Small causal 
networks can be developed for parts of the system 
where information is available. These can be 
linked together or linked to a larger network, and 
they can be copied and modified as more 
information becomes available (Borsuk et al. 
2004). This modular approach can also be used to 
make the BN spatially explicit. For example, water 
quality data from one monitoring point on a river 
can be used to build a sub-network that relates to 
that point. When monitoring data becomes 
available for another site, the sub-network can be 
used as a template and the model can be extended. 
Making the model adaptable in this way may 
increase its longevity.    

3. METHODS 

3.1. The Bayesian network 

A preliminary conceptual model of the system was 
developed with stakeholders. Owing to time and 
data constraints, the BN that we developed from 
the conceptual model was limited to the aquatic 
system of the Macquarie River downstream of 
Burrendong Dam and: 

• two projection time frames; 2015 and 
2070 (with a baseline of 1990 climate as 
‘current conditions’); and 

• indicators and outputs that relate to 
natural resource condition targets that 
have been developed by the Central West 
CMA (Central West CMA 2005). We 
selected a subset of the possible indicators 
based on the availability of information 
and by consulting with stakeholders. 

The BN derived from the conceptual model is 
summarised in Figure 2. It was developed in 
Netica version 3.19 (Norsys 2007). Despite having 
constrained the scope of the BN, development was 
still hampered by a lack of data. In particular, 
information about the relationships between 
system components and climate changes was 
lacking. We used river flow as a surrogate measure 
of climate impacts on many variables. Given the 
focus on the focus on the Macquarie Marshes, 
where flows and flooding are the dominant climate 

related effects on the system, we considered this an 
acceptable concession. In addition, river flow is 
represented using nodes that are based on the 
location of gauging stations along the Macquarie 
River, making it more spatially explicit. This 
structure is summarised in Figure 2 as the 'River 
flow sub-network'.  

Probability tables in the BN were populated using 
case file learning where data was available (using 
Netica version 3.19. Where this type of 
information was not available, relationships 
between variables were determined by reviewing 
regional studies and literature, or by using expert 
opinion. Where none of these methods were 
available, we used generic qualitative assumptions 
(Figure 2) to populate probability tables. 

3.2. Climate scenarios as model input 

The type of information we used in the different 
network components is indicated in Figure 2. For 
climate projections, we utilised the regional output 
options available in OzClim version 2.0.1, the 
Australian Climate Scenario Generator (Page and 
Jones 2001). Our aim was to capture the 
uncertainties across a range of common models 
(vetted by CSIRO, Hennessy et al. 2004) and 
global climate projections. We chose three of the 
SRES marker scenarios that gave us the widest 
range of global temperature change at each time 
frame (Table 1). This allowed us to include ‘worst’ 
and ‘best’ case climate change projections in the 
DSS (in the context of the commonly used SRES 
scenarios), which gives the CMA the most 
flexibility in exploring and understanding the 
possible impacts of climate change in the future. 
For the scenarios we chose, we used the results of 
all eight global climate models available in 
OzClim to generate temperature change (°C), 
average change in rainfall (as % change from 
baseline), and average change in point potential 
evaporation (as % change from baseline) for the 
Central West on a monthly basis for each chosen 
time frame (expressed as an average monthly 
result within each season).  The baseline was the 
1990 long term climate averages provided in 
OzClim. We generated the projections for the 
whole region and for sub-regions that approximate 
different areas of the Central West while focusing 
on the Macquarie River area (Figure 1).  

3.3. Reviewing and assessing the model 

Like most BNs, the one summarised in Figure 2 is 
a ‘work in progress’, in that the data used to 
populate the probability tables is incomplete and of 
varying quality. Identifying these knowledge gaps, 
and working out how they affect model outputs is 
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very important. The model is only valid if the 
impact of these knowledge gaps is taken into 
account. As the model is designed to be re-
assessed and updated, we see the most appropriate 
form of model validation as the use and review of 
the BN (and the DSS) by the end-users. In this 
case, the end-user is the Central West CMA, and 
their assessment should be done in the context of 
the stated aim of the model (to inform the CMA as 
to possible climate change impacts on selected 
condition targets).  

In addition to end-user model review, sensitivity 
analysis can aid identification of knowledge gaps 
in the model. Full sensitivity analysis of the BN is 
beyond the scope of this paper, but an example is 
presented in regards to the qualitative model end-
point of 'Health of the Macquarie Marshes', using 
the measure of mutual information available in 
Netica (Norsys 2007). Mutual information is an 
indication of the amount of influence one model 
component has on another (Korb and Nicholson 
2003). A value of one indicates a perfect causal 
relationship, while zero indicates no influence 
between model components. Typically, model 
components that are direct inputs to the 

interrogated component have higher mutual 
information values, compared to components that 
are not direct inputs. However, mutual information 
is a relative measure and is interpreted as such.   

3.4. The DSS 

We incorporated the model in Figure 2 into a 
prototype DSS that was developed in ICMS (Reed 
et al. 2000)). The DSS provides a user friendly 
interface for selecting scenarios and viewing 
model outputs, and includes extensive 
documentation of assumptions and information 
sources as context for the interpretation of model 
results. This packaging of information helps the 
end-user in reviewing and interpreting the model 
outputs. Further details of the DSS are not 
provided here.   

3.5. Example scenarios 

Numerous scenario combinations can be explored 
in the DSS. To illustrate the outputs of the DSS 
(and BN), we use: 

• average rainfall (% change from baseline) 

Season
Projection 
time frame

Burrendong Dam starting 
volume

Pre-dam/Post-dam 
conditions

Wet/dry 
climatic period

Global projection 
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Burrendong Dam 
change in storage

Projected Burrendong Dam volume

Water available for 
general security allocation

Percent of general 
security allocation made

High security allocation

Irrigation allocation

Env. allocation

Percentage of CAP allocated

Monthly river flow

Daily river flow

Bird breeding 
event

River Red Gum 
growth rate

Location 
flooded

Env. flow 
requirement Oxley annual 

flow

General ATE 
group response

General weed 
response

Lippia
response

Health of Macquarie Marshes

ATE functional 
group response

Flood 
duration

Rainfall (mm) Evaporation (mm)

Historic 
Burrendong 
Dam volume

EC

River water quality
Marshes water quality

Carinda daily salt load

Carinda annual salt load

Change in 
marsh inflow

Spring flood or
Flood recession

Thermal stratification

Water temperature

Total P

TurbidityTotal N

Susceptibility to 
algal blooms

Thermal stratification

Water temperature
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TurbidityTotal N

Susceptibility to algal blooms

Rainfall (% change)

Water allocation sub-network

Climate sub-network

Scenarios

Water quality sub-network

Water quality sub-network
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Figure 2. A summary of the BN of climate impacts on chosen aspects of the Macquarie River and Marshes in the Central 
West of NSW. Dashed outlines indicate sub-networks or modules.  Some linkages within sub-networks have been omitted 
for clarity. Blue = historical data or multiple model outputs, green = empirical relationship from literature or data, yellow = 

qualitative relationship from literature, grey = qualitative assumptions. Underlined = related to CMA targets. 
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across the region in a winter month, 2070 
with high global temperature sensitivity 
(Table 1). This scenario combination 
represents a plausible projected change in 
an important agricultural rainfall season; 
and  

• outputs for some water quality and water 
flow indicators - now (in a winter month) 
and for the 2070 climate scenario already 
described (Figure 3). Other scenario 
choices in the BN (Figure 2) for these 
model runs were arbitrary and were 
selected to represent current conditions 
and a Burrendong Dam Volume that 
would result in the most conservative 
changes in river flows (i.e. 100 % dam 
volume).  

4. RESULTS AND DISCUSSION 

4.1. Climate outputs 

For the climate scenario we have used (winter, 
2070), Table 2 shows some large variations the 
regional climate impacts across the Central West, 
with predicted changes in rainfall of -70% to + 
60%.  

This variation is impossible to present in a single 
deterministic assessment of climate change. An 
important finding is that despite the uncertainty 
(arising from eight climate models) the probability 
of decreases in rainfall (> 5 % decrease) across the 
region is significant (Table 2). There are also large 
seasonal differences in the projected rainfall 
changes. For instance, there is an increase in the 
probability of higher average rainfall (a positive 
change from baseline conditions) during a summer 
month of 2070 compared to a winter month (data 
not shown).  

In the scenario detailed in Table 2, there is also a 
large probability (48.1 %) of there being no 
obvious change in average rainfall in the region 
between Burrendong Dam and Dubbo. This trend 
persists across seasons (43 % for summer months). 
This may indicate that this area is less vulnerable 
to climate change than other areas. However, this 
is difficult to say with certainty without further 
investigation of OzClim and the underlying 
climate models, and how their projections are 
interpolated across small areas. 

4.2. Indicators 

Figure 3 presents the paired results for 3 outputs of 
the DSS. These relate to the water theme of the 
Central West CMA CAP, and each has been 
chosen to illustrate some of the interpretations, and 
the limitations, of the initial modelling. All of the 
comparisons are limited to the example scenario 
combination already described (i.e. a winter month 
‘now’ and in 2070).  

Figure 3a shows changes in the probability of 
meeting the daily environmental flow requirement 
at the Marebone flow gauging station upstream of 
the Macquarie Marshes. There is an increase in the 
probability of the daily flow at this location falling 
below the environmental flow requirement, when 
winter ‘now’ is compared to 2070 (56 compared to 
65 %). Interpreting this result requires the user to 
be aware of the data limitations within the model. 
In this case, the probabilities were developed using 
the relationship between monthly and daily flow 
volumes at the Marebone station. The assumption 
here is that while the distribution of monthly and 
daily flow volumes may change under the 
influence of climate change, the relationship 
between them will stay the same.   

Table 2. Probability of average rainfall changes for 
the study area and sub-regions from Figure 1, using 

the example scenario of winter, 2070. 

 Probability of average rainfall (% change from 
baseline) 

 -70 to -20 -20 to -5 -5 to 5 5 to 20 20 to 60
Whole 
region 19.8 27.2 30.9 14.8 7.41 

Upper 
catchment12 17.9 26.8 34.2 15.2 5.17 

Burrendong 
Dam to 
Dubbo1 

8.78 23.4 48.1 14.8 4.92 

Dubbo to 
Warren1 18.4 27.9 32.4 13.9 7.40 

Warren to 
Carinda 19.8 25.2 33.2 12.8 9.01 

1 Lowest state for this subregion -65 to -20 
2 Highest state for this subregion 20 to 65 

Table 1. Global scenarios and temperature 
change projections used to inform the BN. 

Temperature increase (°C) Timeframe SRES 
marker 
scenario 

low Moderate High 

2015 A1B 0.30 0.40 0.50 
  A1T 0.42 0.55 0.66 
  A1F Not modeled 
  B1 0.33 0.45 0.54 
2070 A1B 1.68 2.30 2.87 
  A1T Not modeled 
  A1F 2.30 3.10 3.77 
  B1 1.17 1.64 2.08 
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Figure 3b is based on a summarised relationship 
derived from an older coupling of rainfall-runoff 
modelling with OzClim outputs (Jones et al. 2002). 
This shows a 40 % increase in the probability of 
zero total monthly river flows at Oxley stream 
gauging station (taken as an inflow point to the 
Macquarie Marshes) when winter 'now' is 
compared to 2070. Again, this result needs to be 
interpreted in light of the assumptions used in the 
modelling. These probabilities are based on past 
IQQM modelling (Jones and Page 2001), which 
incorporates older water sharing and allocation 
rules than are currently in use. However, the 
modelled changes are so large that even when the 
assumptions are considered, Figure 3b still 
indicates that there may be large decreases or 
stoppages in marsh inflows due to climate change. 
These changes are also strongly seasonal (23 % 

probability of zero total monthly flow in an 
autumn month in 2070, 50 % in a spring month).  

Figure 3c shows that there is an increase in the 
probability of lower daily total phosphorus 
concentrations measured at Oxley (i.e. there an 
increase in probability of the 25 to 50 μg L-1 state 
occurring). The relationship between river flow 
and phosphorus concentrations that was used to 
produce these probabilities was based on historical 
water quality data. This data shows a trend of 
decreasing phosphorus with decreasing river flow. 
This reflects the assumption that the trend of 
decreasing phosphorus concentration with 
decreasing river flows (evident in historical data), 
will continue under the influence of climate 
change. Thus, it is too simplistic to say that water 
quality may increase (in regards to total P, at least) 
under climate change, if this assumption is valid 
and the river flows at that location also decrease 
(Figure 3b).  

The examples above show how interpretation of 
the BN outputs should be done while considering 
the data and assumptions that have informed the 
modelling. An assumption that does not appear to 
be valid probably indicates a knowledge gap that 
needs to be addressed. One of the roles of the DSS 
is to provide details of information sources and the 
related assumptions to the user.  

4.3. Sensitivity analysis 

A summary of a sensitivity analysis for the model 
end-point 'Health of the Macquarie Marshes' is 
shown in Table 3, using the scenario of a winter 
month in 2070. We only display the mutual 
information for a subset of model components to 
illustrate the use of sensitivity analysis in 
reviewing the model.  

In Table 3, 'Red Gum growth rate', 'Bird breeding 
event', and 'Marshes water quality' are direct inputs 
into 'Marsh health' (see Figure 2). These have a 
strong influence on 'Marsh health' as indicated by 
the relatively high mutual information values in 
Table 3. However, the river flow components in 
Table 3 also have a strong influence on 'Marsh 
health', even though they are not direct inputs 
(relatively high mutual information values). This 
indicates that these are important model 
components, but as already discussed, they are 
based on past modelling efforts or historical data. 
The key assumption (particularly with the use of 
historical data) is that the relationships that have 
been determined can be extrapolated into a future 
that is influenced by climate change. This is a large 
and unverified assumption. Thus, we can regard 
the influence of climate on flow (particularly at 
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gauging station locations near the Marshes) as a 
knowledge gap, where the limited information 
could be strengthened with more detailed 
modelling.  

5. CONCLUSIONS 

Even though climate change research is topical, 
limited information is available on the regional and 
local effects of global climate change, and 
subsequently there is considerable uncertainty 
involved in determining the impacts on 
environmental assets at this scale. The approach 
we have used amalgamates some of the existing 
sources of information on climate projections and 
system responses into a single modelling 
framework. Adopting a modular BN approach 
allows us to examine the uncertainty and 
probabilities of climate change across the sub-
regions of the Central West, as well as making 
updating and modifying the BN easier.  

We have also shown how some of the outputs of 
the BN should be interpreted in conjunction with 
the data that has been used to produce the model. 
In particular, we have shown how some aspects of 
the model (such as river flow relationships) have 
been based upon historical information and that the 
model assumes these relationships are unaffected 
by possible climate change. The relative 
importance of these relationships is shown using 
an example of a sensitivity analysis, which 
indicates that this is one knowledge gap that 
should be the focus of further research.   
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Table 3. Indicative sensitivity analysis for 
'Marsh health', showing mutual information 

contained in model components. 

Model component Mutual 
information 

Red Gum growth rate 0.081 

Annual flow at Oxley 0.060 

Bird breeding event 0.060 

Total marsh inflow (at Oxley) 0.056 
Total monthly river flow at Marebone 0.052 

Daily flow at Oxley 0.046 

Oxley total phosphorus 0.031 

Marshes water quality 0.014 
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