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EXTENDED ABSTRACT 

The analysis of microarray data remains a challenge 
as one wish to investigate the possibility of the 
expression of thousands of genes across multiple 
samples. Naturally the issue of multiplicity arises as 
one examines the significance of large numbers of 
genes. Recently, one of the coauthors, DBA, and 
colleagues developed a mixed model approach to this 
very problem with successful application to a mouse 
data model. In this particular setting one circumvents 
the false positive issue using a mixture distribution of 
the p-values. Simultaneously one addresses several 
issues such as 1) whether we have any statistically 
significant evidence in any of the genes, 2) what is 
the best estimate of the number of genes in which 
there is a true difference in gene expression?, 3) is 
there a threshold which signals a criteria above which 
genes should be investigated further?, and 4) what is 
the possible proportion of false negatives in those 
genes declared “not interesting” ? The objective of 
this study was to investigate this procedure further 
and illustrate its usefulness and relevance in the 
current work on microarray data analysis. 

1. INTRODUCTION 

In microarray data analysis we want to examine 
if certain genes have difference in expression. 
e.g. disease vs. no disease, characteristic vs. not 
having characteristic, condition vs. no condition, 
etc. Of those genes determined to be expressed, 
what proportion are likely to be false leads? 
Challenges involved in analyzing microarray 
data include sample size or number of cases is 
small (humans, mice, other species), however, 
the number of genes or probes is large (hundreds 
or thousands), multiplicity issues occurring from 
numerous comparisons. Mixture Model approach 
was proposed by Allison et. al. (2002).  Many 
statistical tests are conducted from which one 
obtains a distribution of p-values and there is 
information in the p-values that can be exploited. 
In this paper, we demonstrate the mixture model 
approach by applying it to p-values generated by 

several statistical tests comparing two means 
from several hundred probes. We further 
examine it’s behavior under different 
assumptions (equality, non equality of variances) 
and approaches (permutation, bootstrapping). 

2. METHODS 

We made following assumptions: assume 
independence of gene expression levels across genes. 
Assume N=2n cases divided evenly into two groups 
of n cases each (n=same for each group not a 
requirement) 
 
H0 : No difference in gene expression between two 
groups for the ith gene., i=1,…,k 
    Under H0 the distribution of p-values is uniform 
on [0,1]. 
 
H1 : Alternative is observed distribution of p-values 
is significantly different from a uniform distribution. 
Parker and Rothenberg (1988) point out that any 
distribution on [0,1] can be modeled as a mixture of 
V separate component distributions where the jth 
component (j=1,….,V) is a beta distribution with 
parameters, rj and sj.  
The pdf of the beta distribution is                                     
    β(r,s)(x) = f(x|r,s) = [xr-1(1-x)s-1]/B(r,s) 
    where  B(r,s)=∫[0,1] u r-1(1-u)s-1du  r>0, s>0. 
Note the uniform on [0,1] is the special case where 
r=s=1. 
The log likelihood for the collection of k p-values 
from a model with ν+1 components  is: 
LV+1 = ∑i=1,n ln[λ0β(1,1)(xi) + ∑j=1,ν λjβ(rj,sj)(xi)] 
  where xi = p-value for the ith  test. 
λ0 = probability a randomly chosen test from the 
collection of tests is for a gene for which there is no 
population difference in gene expression (i.e. test of a 
true null hypothesis) 
λj = probability a randomly chosen test from the 
collection of tests is for a gene from the jth 
component distribution which yields a true 
population difference in gene expression (i.e. test of a 
false null hypothesis) 
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One can obtain mle’s of λj ,sj , and rj iteratively for 
the log expression, LV+1, subject to the constraint, 

 1=λ0+ ∑j=1,ν λj    and 0≤ λj ≤1 for all λj. 

-One can test for ν components by computing the 
statistics, 

                    Q=(Lν - Lν-1) 

(Note this does not have a chi square distribution 
with 3 df,  but can be computed using bootstrap, See 
Allison et. al, 2002). 

The best estimate for the number of genes for which 
there is a true difference in gene expression is simply, 

 k(1- mleλ0) 

where mleλ0  is the ml estimate of λ0. 

One can compute the 100(1-α)% confidence interval 
around mleλ0 by usual bootstrap. 

For a particular p-value of interest one can compute: 
PTP = posterior true positives 
       = the proportion of genes with a true     
differential expression among the genes which are 
declared interesting via p-value ≤ x. 
PFP = posterior false positive 
       = proportion of genes with no differential                   
expression among the genes which are        
declared interesting via p-value ≤ x. 
 
For a particular p-value of interest one can  also 
compute: 
PFN=posterior false negatives 
           =the proportion of genes with a true         
differential expression among the genes      
which are declared not interesting via p-value > x. 
EDR =expected discovery rate   
         = expected proportion of genes that are truly                
differentially expressed that will be declared to     be 
differentially expressed 

3. RESULTS 

We examined obesity data for difference in gene 
expression of obese (n=19) vs. non obese (n=20) for 
300 gene probes. A p-value was generated for each 
probe of obese vs. non obese by four tests of means: 
Permutation* (equal variance t-test assumption) 
Permutation (unequal variance t-test) 
Pivotal bootstrap (equal variance t-test) 
Pivotal bootstrap ( unequal variance t-test)  
*See Brand, J et al (2006) for explanation of these 
tests as related to gene expression data. 

Figure 1. Permutation-Unequal Variance (PUV) 

 

 

 

 

Figure 2. Bootstrap Unequal Variance (BUV) 
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Bootstrap Unequal Variance
(BUV)

 

 

Table 1. k=300                                p-value=0.10 

Tests  mleλ0  95%mleλ0  k(1-mleλ0)  PTP   PFP  PFN    EDR 

PEV     0.53   (.46,.60)        141        0.90   0.10  0.002  0.998    

PUV     0.53   (.47, .59)       141        0.90   0.10  0.001  0.998 

BEV     0.47   (.38, .56)       159        0.90   0.10  0.002  0.990 

BUV     0.47   (.38, .56)       159        0.90   0.10  0.002  0.990 

 

4. CONCULSION 

1.  All p-value frequency plots indicate a non 
uniform distribution across p-values. Formal Q-
test not shown here. 

2. Assuming a single beta there are  140 to 159 
genes for which there is a true difference in gene 
expression. The permutation tests give a more 
conservative estimate than the bootstrap. 

3. For p-value of interest of 0.10, the PTP, PFP, 
PFN and EDR are consistent across all tests. All 
these values are in optimal ranges for the 
information sought in this data. 
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