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ABSTRACT

Throughout the world there is increased demand on
freshwater resources. Such resources are limited in
quantity and erratic in availability but are renewed
over time through the water cycle. Planning for water
management then has temporal scales and stochastic
variation to consider. There may also be several
sources of water suitable for non-potable purposes.
Supplying these by supplementing higher quality
water with sources of differing quality and availability
is the blending problem studied in this paper.

Consider a supplier in a non-potable use water market.
The supplier obtains water from a range of sources and
delivers it to a number of users. One such application,
on which our model is loosely based, is the integrated
water resource management project of the northern
region of metropolitan Adelaide. Here the major
potential sources are the stormwater harvesting and
aquifer storage project of the City of Salisbury,
recycled water from Bolivar water treatment plant and
Adelaide’s reticulated, potable water supply. Potential
major users of the water (sinks) are a wool processing
plant, a residential grey water network and council
parks and gardens (Figure 1).
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Figure 1. Sources and sinks for the water allocation
problem

This is an optimisation problem of blending water
from various sources to meet quantity and quality
requirements of the sinks, with the objective of
maximising expected profit from undertaking supply.

The supplier undertakes to supply a guaranteed
quantity of water to each sink in each time period
and charges a premium for this water. There are
further, preferred demands which are delivered at
the supplier’s discretion and for which a lesser cost
applies, both amounts to meet salinity conditions.
Profit is maximised if lowest cost sources are used to
supply the firm demand and, perhaps, the preferred
demand. The monetary value of the water resources is
assessed by linear programming (LP) and by integer
linear programming (ILP).

The problem is solved over sequential time periods,
that is, it is solved as a stochastic dynamic
programming (SDP) problem with stormwater as a
stochastic source. The decision variable in this
problem is the relative proportion of water from
each source supplied to each user at each time step.
Identifying the optimal decision for each state of the
system gives a policy for the optimal use of available
stormwater, given the probabilities of replenishment
of this resource. SDP usually has the objective of
maximising expected monetary value (EMV) but here
we illustrate the use of an alternate objective, that of
minimising exposure to risk of loss from undertaking
supply, a risk quantified by the Conditional Value-
at-Risk (CVaR). We compare solutions found by
maximising EMV and by minimising CVaR.

The initial model broadly discretises the state space
and we later assess solutions from using finer
discretisations to represent two continuous variables
- time and volume. The problem is partly one of unit
commitment because stormwater and recycled water,
lacking an extensive reticulation network, are likely
to be handled in a water market in discrete, relatively
large amounts. Then an integer program may be
more realistic, but linear programs are easier to solve.
We find and compare LP and ILP solutions for the
problem.

We describe and comment on the policies that our
model generates, giving details of the long-term
results of particular strategies. The profits found by
the LP and the ILP approaches differ slightly but
draw closer with increasing discretisation of the state
space.
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1 INTRODUCTION

Water blending is likely to become much more
common as demand for limited resources increases.
Then techniques of mathematical analysis used for the
similar problem of scheduling of reservoir releases,
for example, Archibald et al. (2006) and Cabero et
al. (2005), could be applied in a water market. We
present a model for non-potable use, supplying water
from 3 sources to meet demands at 3 sinks. We use
LP and ILP to determine the optimal blend of water
between source and sink, and couple these results to
an SDP that finds the long-term optimal policy for use
of water from a stochastic source.

The sources are storm, recycled and mains water,
of which stormwater has the lowest salinity. Thus
it is a preferred source for blending but is erratic
in quantity and variable in availability with time.
Recycled water is more constant in availability and
quantity but has a high concentration of salts. Mains
water is between the other two sources in salinity and
has relatively large and constant availability, and is
treated to the standards for potable use. Given the
limited availability of water from other sources or its
inability to meet quality requirements, mains water
can be blended to meet demands for non-potable use.

Of the 3 sinks, the wool processing plant has a demand
for good quality water; the grey water network takes
water of a lower standard; the council can use
water of a lower quality again. We focus on the
salinity concentration of the various water sources
here but other relevant water quality issues which
could be included in the mathematical programming
given suitable data include pH, bacterial levels and
mineral concentration. The maximum acceptable
salinity levels are typical for their intended use but
also represent more generally water suitability for a
particular range of uses. For example, water which
has salinity levels acceptable to the wool processor
can also meet drinking quality standards in that regard.
Water suitable for non-potable home use would be
generally acceptable for commercial cleaning and
garden watering. Water suitable for council use,
for example, irrigation of recreation areas, would be
restricted to use in hardier environments.

The price of stormwater should reflect its cost of
capture, cleaning and storage. However, these costs
may be somewhat defrayed since the capture of
stormwater runoff avoids a certain amount of damage
to near-coastal environments. Similarly, a reduced
price for recycled water may reflect the cost of its
disposal to the environment, encouraging its reuse.
Mains water is processed to a high standard and water
from this source is priced accordingly.

One approach to discretising continuous variables is to

identify typical states that a system has been observed
in in the past, thereby enabling the system to be
represented in low-dimensional terms (Archibald et
al. (2006)). Our initial model demonstrates the
specification of the LP/ILP - SDP model but a realistic
application would use a larger state space. However,
the conclusions from comparing the LP and ILP
solutions are shown to carry over to an expanded state
space.

A water utility may well be managed with a risk
averse priority and we compare optimal policies found
by a profit maximisation (EMV) objective and by
CVaR. Conditional Value-at-Risk is a risk measure
developed in the financial services arena. It is defined
as the expected loss given that the loss is greater
than or equal to a quantile of the loss distribution
called Value-at-Risk (VaR) (Rockafellar and Uryasev
(2002)). VaR is the maximum loss expected to be
incurred over a given time horizon at a specified
level of probability α. For cumulative probability
distribution for loss, F (d, z) where d is a decision, z
is loss and E is expectation

CVaRα(d) = E{ z | F (d, z) ≥ α}. (1)

CVaR has been assessed for use in the electricity
generation market (Cabero et al. (2005)) as a risk
measure suitable for developing rules for the optimal
allocation of stochastic resources.

2 MODEL SPECIFICATION

2.1 Water Characteristics

Water is available from three sources: stormwater
from a reservoir which could be holding dams and/or
aquifer storage sites (s); recycled water from a sewage
treatment plant (r); and mains water (m). Let Ai

represent the quantity of water available from each
source i where i ∈ {s, r,m}. The available quantity
of stormwater is treated as a stochastic variable,
whereas available quantities of recycled and mains
water are treated as deterministic (Table 1).

We consider volumes of water in terms of discrete
units, and time (t) is modelled as discrete with
t ∈ {0, . . . , T}. Our initial model assumes that the
stormwater stored in the reservoir As ∈ {0, 1, 2} and
a time step of 1 year. During the year there may be 0,
1 or 2 units available from the reservoir if capacity is
available. The amounts of rainfall/runoff are

• 0 -“low” - streamflows are limited and no water
is taken from the environment

• 1 -“fair” - flows are moderate and 1 unit can be
stored if capacity is available
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• 2 -“wet” - flows are above average and 2 units
can be stored if capacity is available.

There are 3 sinks: a wool processing plant (w), an
urban grey water network (u), and the council (c).
Each sink (j) has a firm demand Mj and a preferred
demand Pj > Mj . Water supply above the firm
demand is sold at a lower price because its supply
is not guaranteed (Table 1). Let xi,j be the amount
of water supplied from source i to sink j where i ∈
{s, r,m} and j ∈ {w, u, c}.

We assume typical salinity levels for stormwater of
100 mg/l or ppm, for recycled water of 2000 mg/l and
for mains water of 500 mg/l. We set the maximum
acceptable salinity level for the wool processing plant
at 500 mg/l, for urban grey water supply at 900 mg/l
and for council purposes at 1300 mg/l. Let Si be the
salinity of each source and let Bj be the maximum
tolerance for salinity at each sink.

Table 1. Water characteristics of sources and sinks.
Availability, firm and preferred demand are in units of
volume, salinity in mg/l. Stormwater availability is a
random value ∈ {0, 1, 2}.

source: mains recycled storm
availability up to 20 up to 5 {0, 1, 2}

salinity 500 2000 100
sink: wool urban council

firm demand 2 3 3
pref. demand 3 6 6
max. salinity 500 900 1300

Costs and returns per unit of water supplied are shown
in Table 2. Let cij be the costs accrued from supplying
1 unit of water from source i to sink j. Let G
be the return per unit for supplying the guaranteed
amount and R be the return per unit for supplying the
preferred demand.

Table 2. Costs (cij) and returns (G, R) per unit of
water supplied ($)

storm recycled mains
wool 1300 900 2550

urban 1300 900 2550
council 1300 900 2550

return for firm demand 4000
return for preferred demand 2500

2.2 The linear program

The LP finds the optimal allocations of water between
the various sources and sinks with the objective

of maximising profit while meeting availability and
salinity constraints. The linear program is:

max

G
∑

j

Mj +
∑
i,j

(xij −
∑

j

Mj) R−
∑
i,j

xijcij



such that
∑

i

xij ≥ Mj for j = w, u, c

∑
i

xij ≤ Pj for j = w, u, c

∑
j

xij ≤ Ai for i = s, r,m

∑
i

Si xij/
∑

i

xij ≤ Sj for j = w, u, c

xij ≥ 0

The ILP is the same except for the last constraint
which would read xij ∈ N ∪ {0}. Both programs
are implemented in Matlab; the LP using linprog from
Matlab’s optimisation toolbox, and the ILP using milp
downloaded from http://www.ie.ncsu.edu/kay/matlog,
and written by Michael G. Kay. Our implementation
of the SDP policy iteration algorithm is also run in
Matlab.

2.3 Inflow probabilities

The relationship of runoff to rainfall is generally
considered to be non-linear due to the influences
of vegetation cover, infiltration rate, ground slope,
rainfall intensity and soil moisture content. However,
a linear relationship is a reasonable approximation
for calculating runoff for a given catchment (FAO,
1991), particularly for an urban catchment with a high
proportion of sealed surfaces. Figure 2 shows annual
rainfall at a site (Parafield) in the catchment of the
stormwater harvesting site. Initially we assume that
annual rainfall less than 380 mm provides 0 units of
inflow to the site, rainfall amounts between 380 and
580 mm provide 1 unit of inflow and rainfall amounts
greater than 580 mm provide 2 units. Yearly inflow
probabilities for stormwater (Table 3) are calculated
from the histogram of annual rainfall.

Table 3. Inflow probabilities, (pk), and amounts (in
units of volume) for the 3 - state, annual time step
system

rainfall (mm) inflow amount pk

minimum - 380 0 0.2
380 - 580 1 0.5

580 - maximum 2 0.3
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Figure 2. Annual rainfall at Parafield, Adelaide, 1885
- 1998

2.4 The stochastic dynamic program

The state space for the SDP algorithm is the content
of the reservoir at the beginning of a time period t =
1, . . . , T . Decisions are defined as an intended release
of d ∈ {0, 1, . . . , D} units of water from the reservoir
over the duration of the time step. If d > k the ability
to take d − k units from the reservoir depends on the
inflows to the reservoir.

The SDP algorithm uses transition matrices whose
entries, pkl(d), which depend on a decision d, are
the probability of moving between states of the state
space, and a reward matrix whose entries, rkl(d), are
the value obtained by making a particular transition
under decision d. A transition matrix is specified
for each decision and a corresponding reward matrix
calculated for each decision. Let k ∈ {1, . . . ,K}
represent the states of the system. For our initial
model, K = 3. The policy iteration procedure is
implemented in two parts - value determination and
policy improvement (Howard, 1960). The policy
iteration procedure assumes that T is sufficiently far
in the future for a steady state to apply. For a given
policy, total expected earnings over the remaining
time steps at time t depends on the state, k, at time
t, and is written as vt(k). For a given policy, total
expected earnings is calculated recursively as

vt(k) =
∑

l

pkl[rkl + vt+1(l)] for l = 1, . . . , L.

(2)
For large T , in the steady state,

vt(k) = g + vt+1(k) (3)

where g is the expected return per period. The

expected return is a constant, regardless of the current
state, because the additional step is sufficiently far in
the future to be independent of the current state (the
ergodic property). Substituting (3) into (2) gives the
set of equations making up the value determination
step

g+v(k) =
∑

l

pklrkl+
∑

l

pklv(l) k = 1, . . . ,K

(4)
which are solved for g and v(2) up to v(K), v(1)
being arbitrarily set at 0. The policy improvement step
maximises over d for all states k∑

k

p′kl(d)r′kl(d) +
∑

l

p′kl(d)v(l). (5)

The algorithm starts with an arbitrary policy and
continues until the policies produced on two
successive iterations are identical.

We assume there are no losses of water from the
reservoir other than intended withdrawals. Given the
probability vector of inflows over a single time step
(p0 p1 p2) for inflows of 0, 1 and 2 units of volume
respectively, the transition matrix for decision 0 is

P (d0) =

 p0 p1 p2

0 p0 p1 + p2

0 0 1


The transition matrix for decision 1 is

P (d1) =

 p0 + p1 p2 0
p0 p1 p2

0 p0 p1 + p2


The transition matrix for decision 2 is

P (d2) =

 1 0 0
p0 + p1 p2 0

p0 p1 p2


The reward associated with a decision depends on
the decision to take a number of units of stormwater
from the reservoir, the probability of those units being
available during the time period, and the allocations
of water made from this and the other sources to meet
demand. If a decision is taken, for example, to take 2
units of water while the current state of the system
is 0, with probability p0 the decision may result in
0 units of stormwater being taken from the reservoir,
with probability p1 1 unit is taken from the reservoir
and with probability p2 2 units are taken from the
reservoir. The LP or the ILP, as appropriate, determine
the optimal allocations for each state of the problem,
given the supply, demand and salinity constraints. The
profit, Eν , from the optimum allocated given by the
LP/ILP depends on the units of stormwater available
(ν). The units of stormwater available depend on
the state when a decision is made and the random
input to the reservoir. These profits, weighted by the
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probability of taking the amount of stormwater from
the reservoir under the decision, make up the reward
matrix, r(d)kl, for each decision. The reward matrix
for decision 0 is

r(d0) =

 E0 E0 E0

E0 E0 E0

E0 E0 E0


The reward matrix for decision 1 is

r(d1) =

 p0
(p0+p1)

E0 + p1
(p0+p1)

E1 E1 E1

E1 E1 E1

E1 E1 E1


The reward matrix for decision 2 is

r(d2) =

 p0E0 + p1E1 + p2E2 E2 E2
p0

(p0+p1)
E1 + p1

(p0+p1)
E2 E2 E2

E2 E2 E2


A policy is defined by specifying a decision for each
state of the system. For example, one policy is to
withdraw the current contents of the reservoir over
the time step. The three decisions are: withdraw
ν units of stormwater if the reservoir contains ν
units (ν ∈ {0, 1, 2}). The decisions that make up
this policy can always be implemented. By using
a vector to represent each state of the system in
order and the elements of the vector to represent
decisions, we can write the above policy as [0, 1, 2]T .
A contrasting policy would consist of decisions to
withdraw 2 units of water from the reservoir over the
time step, [2, 2, 2]T . For this policy, decisions can
only be implemented from states 0 and 1 if the inflow
to the reservoir is 2 or 1 respectively.

3 POLICIES AND PROFITS

3.1 Initial model - 3-state, yearly time step

The optimal allocations found by the ILP for 0, 1 or
2 units of stormwater are shown in Table 4 below.
As stormwater becomes available, use of the most
expensive source of water - mains - is reduced. State
2 enables the blending of stormwater with recycled
and mains water to meet the salinity conditions for
urban use and thus the units of water supplied in that
state increases to 14 units. By contrast, the allocations
for the LP and 3-state system in Table 5 show a
slight reduction in overall water supply as stormwater
availability increases. This is a consequence of the
cost of mains water exceeding the return for preferred
demand.

The SDP finds an optimal policy for the ILP and
EMV objective of [0, 2, 2]T . This policy has transition
matrix

P[0,2,2] =

 0.2 0.5 0.3
0.7 0.3 0
0.2 0.5 0.3



Table 4. Optimal allocations found by the ILP for each
state for the 3-state, annual time step model

state of source allocations total profitreservoir wool urban council supply

{0}
storm 0 0 0

12 18000recycled 0 1 3
mains 2 3 3

{1}
storm 0 1 0

11 19300recycled 0 1 3
mains 2 1 3

{2}
storm 0 2 0

14 22050recycled 0 2 3
mains 2 2 3

Table 5. Optimal allocations found by the LP for each
state for the 3-state, annual time step model

state of source allocations total profitreservoir wool urban council supply

{0}
storm 0 0 0

14 19220recycled 0 1.6 3.2
mains 2 4.4 2.8

{1}
storm 0.32 0.34 0.34

13.75 20812recycled 0.09 1.63 3.3
mains 1.59 3.78 2.37

{2}
storm 0.51 0.8 0.69

12.75 22112recycled 0.14 1.48 3.38
mains 1 36 2.47 1.93

which has equilibrium distribution
(0.4083, 0.4167, 0.1750) and long-term profit of
$20,167. Long-term profit is the product of the
proportion of time the system spends in each state
in the long-term - the equilibrium distribution -
and a weighted sum of the rewards for the decision
prescribed for each state. The weights are based on
the probability distribution of inflows. For example,
the long-term profit for the ILP, EMV objective, 3-
state system given above is 0.4083×18000+0.4167×
(0.2×19300+0.8×22050)+0.175×22050 = 20167.

The trend in supply for the LP is to provide the
guaranteed amount of water to the wool processor,
the maximum amount to the council and progressively
reduce supply to the urban greywater network as
more stormwater is available. The trend in use of
sources is to make full use of any stormwater, use as
much recycled water as possible - given the salinity
restrictions, and reduce use of the most expensive
mains water. The SDP finds an optimal policy for
the LP of [1, 2, 2]T . The transition matrix for policy
[1, 2, 2]T is

P[1,2,2] =

 0.7 0.3 0
0.7 0.3 0
0.2 0.5 0.3


which has equilibrium distribution (0.7, 0.3, 0) and
long-term profit of $20,901. With its freedom
to blend fractional amounts of water and find an
optimal solution over a continuum, the LP solution
does produce a higher long-term profit as expected.
However, the percentage increases in profit found in
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moving from the optimal ILP solution to the optimal
LP solution are small, being 6.78, 7.83 and 0.28 %
for each state respectively. The potentially better
representation of the system and thus greater accuracy
obtained by integer solutions may not be justified if
they increase computational complexity, particularly
if a higher dimensional representation of the system is
used.

3.2 Policy change under CVaR objective

CVaR is calculated using the definition given in
Section 1. Here, the worst case losses correspond to
lowest profits and occur when inflow to the reservoir
is 0. The probability of 0 inflow is 0.2 so we work
with a CVaR0.8 criterion, and a time horizon of one
year.

The CVaR objective appears in the SDP algorithm in
the value determination step as

ht(i) = [(CVaRα)i +
∑

j

pijht+1(j)] (6)

The optimal policy with CVaR0.8 for both the linear
and integer programs, is [0, 0, 2]T . The policy shows
the potential value of holding water in storage to
reduce the likelihood of having to obtain water from
a more expensive source in a later period. This policy
has an equilibrium distribution of (0.1231, 0.3846,
0.4923), long-term profit of $20,644 for the LP and
$19,994 for the ILP. This is the expected approach
from using a CVaR objective as the risk measure is
conservative - it favours avoiding the conditions which
could generate the worst loss.

3.3 Increasing resolution - the 5-state model

We increase the state space of the reservoir and find a
vector of inflow probabilities for amounts of 0, 1, 2,
3 or 4 units of stormwater of [0.0915, 0.3384, 0.2652,
0.2195, 0.0854] respectively. Salinity constraints are
as before. Cost and return per unit (2) are halved to
enable direct comparison with the 3-state model.

Optimal water allocations for each state, total supply
and profit for the LP are shown in Table 7, as are
equivalent results for the ILP in Table 8. The optimal
policy for the LP with EMV objective is [2,2,2,3,4]T .
The equilibrium distribution for this policy is (0.4568,
0.2647, 0.1710, 0.0837, 0.0238) and long-term profit
is $20,698. The optimal policy for the ILP with EMV
objective is [0,0,3,3,3]T . This policy has equilibrium
distribution (0.1523, 0.2267, 0.2795, 0.1989, 0.1426)
and long-term profit $20,366.

The probability of the worst outcome - having 0
units of stormwater available - is 0.09 for the 5-state

Table 6. Availability and demand for sources and
sinks for the 5-state problem. Availability, firm and
preferred demand are in units of volume. Stormwater
availability is a random value ∈ {0, 1, 2, 3, 4}.

source: mains recycled storm
availability up to 40 up to 10 {0, 1, 2, 3, 4}

sink: wool urban council
firm demand 4 6 6

pref. demand 6 12 12

Table 7. Optimal allocations found by the LP for each
state for the 5-state, annual time step model

state source allocations total profitwool urban council supply

{0}
storm 0 0 0

28 19220recycled 0 3.20 6.40
mains 4 8.80 5.60

{1}
storm 0.28 0.34 0.39

28 20065recycled 0.08 3.29 6.50
mains 3.65 8.37 5.11

{2}
storm 0.59 0.71 0.70

27.5 20812recycled 0.16 3.26 6.59
mains 3.25 7.54 4.71

{3}
storm 0.72 1.22 1.06

26.5 21462recycled 0.19 3.13 6.68
mains 3.09 6.15 4.26

{4}
storm 0.77 1.88 1.35

25.5 22112recycled 0.21 3.03 6.76
mains 3.02 4.59 3.89

Table 8. Optimal allocations found by the integer
program for each state for the 5-state, annual time step
model

state source allocations total profitwool urban council supply

{0}
storm 0 0 0

28 18725recycled 0 3 6
mains 4 9 6

{1}
storm 0 0 1

27 19375recycled 0 3 6
mains 4 9 4

{2}
storm 0 1 1

26 20025recycled 0 3 6
mains 4 7 4

{3}
storm 0 0 3

28 21425recycled 0 3 7
mains 4 9 2

{4}
storm 0 3 1

27 22075recycled 0 4 6
mains 4 5 4

model, thus α for CVaR is now 0.91. The CVaR0.91

objective gives an optimal policy of [0,0,0,3,3]T for
the ILP. The equilibrium distribution for this policy
is (0.0272, 0.1417, 0.2539, 0.2702, 0.3070) and long-
term profit $20,284. Applying the CVaR0.91 objective
to the LP gives an optimal policy of [0,1,2,3,4]T . The
equilibrium distribution for this policy reproduces the
inflow probabilities and long-term profit is $20,678.
Under policy [0,1,2,3,4]T managers take only the
amount of stormwater currently held in the reservoir.
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3.4 Increasing resolution - 3-state 2-season model

The one year decision period of the initial model may
be insufficiently detailed for practical management.
Adelaide has a typical Mediterranean rainfall pattern
and so it seems natural to divide the year into 2
seasons of drier and wetter periods. Doing so against
average monthly rainfall over the 107 year record
produces 2 seasons of uneven length, the mostly
dry period (summer) of 5 calendar months from
November to March and the wetter period (winter) of
7 months from April to October (Figure 3).

Representing stormwater storage with 3 states and
specifying the amounts of stormwater availability as
0 for rainfall less than 140 mm for the season, 1 for
rainfall between 140 and 240 mm, and 2 for rainfall
above 240 mm, we find transition probabilities from
the histograms of Figure 3. A probability vector for
summer inflows of 0, 1 or 2 units of stormwater is
(0.74, 0.23, 0.03)T . Formally the SDP is now set up
with 6 states s0, s1, s2, w0, w1 and w2 representing
the seasons and states of the reservoir at the beginning
of the time step.

The optimal policy for the summer months found by
the LP and EMV is [1, 2, 1]T , while that for the ILP
and EMV is [0, 0, 2]T . The equilibrium distributions
for these optimal policies are (0.97, 0.02, 0.01) for
policy [1, 2, 1]T and (0.39, 0.48, 0.13) for [0, 0, 2]T .
Note that the probability of seeing 2 units of inflow
of stormwater in a single time step is only 0.02, thus
the optimal ILP policy has essentially a strategy of
conserving a single unit of water when it is available in
one summer, and carrying it over to the next summer
when a second unit may inflow to the reservoir. This
is not a practical management policy. Long-term
profit for policy [1, 2, 1]T is $19,362 and $18,526 for
[0, 0, 2]T .
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Figure 3. Parafield rainfall for a. summer, defined
as the 5 months November to March and b. winter,
defined as the 7 months April to October.

A probability vector for winter inflows with
stormwater availability as specified for summer
is (0.01, 0.06, 0.93)T . The optimal policy for the
winter period found by the LP and EMV is [1, 2, 2]T ,
the same as found for the entire year, while that

for the ILP and EMV is [0, 2, 2]T . The equilibrium
distributions for these optimal policies are (0.07,
0.93, 0) for policy [1, 2, 2]T and (0.04, 0.46, 0.50)
for [0, 2, 2]T . As for a whole year decision period,
the optimal policy for use of stormwater in winter
has the effect of managing the reservoir so that,
in the long-term, it is never full. Here, this policy
has an economic imperative but the policy is also
environmentally friendly, providing capacity to
intercept stormwater which would bypass a full
reservoir and be released to nearby estuaries with
deleterious effects on near-shore habitat. Long-term
profit for policy [1, 2, 2]T is $21,947 and $21,812 for
[0, 2, 2]T .

4 CONCLUSION

Our integer/linear stochastic dynamic programming
model generated policies for the optimal management
of stormwater in a blending problem. Policies
found by EMV criterion were usually found to take
stormwater in amounts above those held in storage
at the beginning of the time step, while the CVaR
criterion produced policies that conserved water
currently held in storage for some states. Policies
found by LP and by ILP under the EMV criterion
were different and long-term profits differed slightly
- the difference decreased when resolution of the state
space was increased. Increasing the resolution of the
time variable demonstrated that seasonal differences
lead to differing optimal policies. To make a more
realistic allowance for the stochastic variation in
stormwater throughout the year we will need to
discretise time at a finer scale and hence the volume
discretisation must increase.
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