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EXTENDED ABSTRACT

We present a general approach to estimating parame-

ters of continuous-time Markov chains from discretely
sampled data. This methodology is combined
with a new stochastic model for transmission of
hospital-acquired infections — one which accounts
for dynamic bed occupancy — providing a method
for estimating the parameters of such systems. We
pay particular attention to the conditions under which
modelling dynamic bed occupancy is necessary. We
additionally provide a new method for incorporating
partial observability, and compare the results from
this method to the commonly used existing approach.
These results are anticipated to have wide application
in studying nosocomial infections, and for assessing
the efficacy of possible management strategies

designed to decrease the prevalence of such infections.

Hospital-acquired infections caused by transmissible
nosocomial pathogens have been widely studied. This
is due to the detrimental effects of such pathogens
on patient health resulting in high costs in terms of
loss of life and demands on health-care resources.
Reports in the United Kingdom state thatin 10
patients admitted to hospital will acquire a nosocomial
infection, resulting in approximatel$000 deaths
and costing the National Health Service one billion
pounds per annum (Inweregbutial,, 2005).

Reports of nosocomial infections are continuing to
rise, placing increased importance upon their study
(see Nimmoet al. (2003) for evidence in Australia).
This has focussed attention on developing strategies
for limiting the prevalence of such infections, for
example possibly through improved hygiene practices
amongst health-care workers (e.g. handwashing),
selective antibiotic use, and isolation (human-human
distancing) strategies.

To understand the dynamics of nosocomial infection

transmission, and to evaluate the efficacy of these
possible control strategies, we must estimate param-
eters from data consisting of counts of symptomatic
individuals over time. Coopesat al. (2003) undertook

a systematic review of studies using interrupted

time series (ITS) data for evaluating intervention
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strategies for controlling hospital infections. Out
of 24 ITS studies presenting any form of statistical
analysis, only one incorporated dependencies between
observations.

This led Cooper and Lipsitch (2004) to present a
method for parameter estimation using structured
hidden Markov models, representing a significant
advance on the methods commonly used at that time.
The underlying model of this method is a continuous-
time Markov chain, a type of model used extensively
in theoretical studies but not appearing nearly as
widely in applied studies, perhaps due in part to

a lack of easily-understood estimation procedures
for calibrating these models to real-world systems.
Cooper and Lipsitch (2004) provide a method of

estimation for such models, which additionally goes
some way to incorporating partial observability, an

aspect inherent in modelling nosocomial pathogens.

Our purpose here is two-fold. First we provide
a new approach to incorporating partial observ-
ability. This is to overcome a limitation in the
existing hidden Markov model approaches, where
symptomatic individuals do not remain identified
between observation points. This arises from the
major drawback of using hidden Markov models, in
that the current output (observation) is assumed to be
statistically independent of the previous output. A
comparison of our approach to the existing hidden
Markov model approach is undertaken demonstrating
the effectiveness of our approach.

Secondly, we provide a model and accompanying
methodology for addressing an important problem

often encountered when analysing hospital infection
data, namely dynamic bed occupancy. We investigate
when it is necessary to incorporate dynamic bed
occupancy in estimation procedures, and provide clear
methodology for how this may be effected in practice.

This paper provides results and establishes improved
methodology useful for studying hospital-acquired
infections and for assessing the efficacy of possible
management strategies; we hope that these results are
used to determine optimal management strategies for
mitigating the prevalence of nosocomial infections.


mailto:j.v.ross@warwick.ac.uk

1 INTRODUCTION

Hospital-acquired infections caused by transmissible
nosocomial pathogens have been widely studied. This
is due to the detrimental effects of such pathogens on
patient health resulting in high costs in terms of loss
of life and demands on health-care resources. Reports
of such infections continue to rise, placing increased
importance upon their study (see e.g. Nimetaal,,
2003).

To understand the dynamics of nosocomial infection
transmission, and to evaluate possible control
strategies, we must estimate parameters from data
consisting of counts of symptomatic individuals
over time. Cooperet al. (2003) undertook a
systematic review of studies using interrupted time
series (ITS) data for evaluating intervention strategies
for controlling hospital infections. Out of4 ITS
studies presenting any form of statistical analysis only
one incorporated dependencies between observations.

This led Cooper and Lipsitch (2004) to present a
method for parameter estimation using structured
hidden Markov models. The underlying model of

this method is a continuous-time Markov chain.

Continuous-time Markov chains have been proposed
as theoretical models for an array of biological

systems. However, their usage in applied modelling
is not as extensive, most likely due to a lack of clear
statistical procedures for fitting the models to data.

While the method presented by Cooper and Lip-
sitch (2004) incorporates partial observability, an

aspect inherent in modelling nosocomial pathogens,
they also cite a number of limitations in their approach
to parameter estimation. One of these is: “Difficulties
may also occur if there are large fluctuations in

the total population size; while the observation

model could readily cope with such fluctuations by

varying denominators, changes in the dimension of
the underlying Markov chain would be harder to

accommodate.” (page 234).

We overcome this limitation by developing a new

stochastic model for the underlying Markov chain.

The new model specifically incorporates dynamic

bed occupancy. We compare estimates derived
from incorporating dynamic bed occupancy, to those
derived from assuming full ward occupancy, to deduce
conditions under which the modelling of dynamic bed

occupancy is necessary.

Finally, we consider an alternative approach to
incorporating partial observability. This is to over-
come another limitation in the hidden Markov model
approaches which have appeared recently, where
symptomatic individuals do not remain identified
between observation points (e.g. Cooper and Lipsitch,
2004 & McBrydeet al, 2007). This arises from the
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major drawback of using hidden Markov models, in
that the current output (observation) is assumed to
be statistically independent of the previous output.
Our approach is to explicitly model the number of
observed colonised (symptomatic) indidviduals, in
addition to the underlying actual number of colonised
individuals, and then use marginal distributions
for estimation purposes, consequently incorporating
dependencies between observations. A comparison of
the accuracy of these two approaches is undertaken.

2 MARKOV MODELS

Most models used for infectious disease modelling
belong to a class of processes known as Markov
population processes (Kingman, 1969), a type of
continuous-time Markov chain. The evolution of such
a Markov chain is governed by transition rates which
we place in a matrix) = (¢(m,n),m,n € S), with
q(m,n) being the rate of transition from state to
staten, for n # m, andg(m,m) = —q(m), where
q(m) == 3, ., a(m,n) (< o), is the total rate at
which we leave staten. S is the state space (set of
all possible values the process may take on) and the
model is specified by writing dowg.

As an example, consider the model for hospital
infections presented by Cooper and Lipsitch (2004),
being similar to the model of Pelupessyal. (2002).
Specifically, the model is a continuous-time Markov
chain(m(t),t > 0) (m(¢) is the number of colonised
patients at time) taking values inS = {0,1,..., N}
with transition rates

glm,m+1) = ﬂ%(l\f —m) +vu(N —m)

gim,m—1) = (1 —v)um,

where 5 is the colonisation rate (per contact rate of
infection transmission)y is the per individual rate of
discharge from the ward, is the probability of a new
patient having already been colonised on admission
and N is the number of beds in the ward. We note
that this model assumes that a discharged patient
is immediately replaced by a new patient and thus
assumes that alV beds are occupied at any one time.
The model we present in the next section removes this
assumption by allowing for dynamic bed occupancy.

We will assume throughout the paper th§

is regular, so that there is a unique transition
function P(t) with entriesp;;(t) corresponding to
the probability that the process moves from state
to statej in time ¢. Regularity is guaranteed i)

is boundedin the sense thag(m) < « (for all
m), for some constant, a condition that is trivially
satisfied when there are finitely many states. In this
case we may writdP(t) = exp(Qt), whereexp is

the matrix exponential. In most cases the transition
function cannot be evaluated explicitly. However
there exists packages for efficient evaluation of the



required matrix exponential, provided the state space
is not too large.

We will suppose that there is a parameter (or vector of
parametersy, contained in some parameter spé&ie
that must be estimated. We will allow the dependence
on the parameterg to be made explicit in our
notation by writingQ(#) for the transition rates and
P(0;t) = exp(Q(0)t) = (pi;(0;t),4,5 € S) for

the transition function. We will also writg; (6; ¢) for

the probability that the process is in statat timet;
p(0;t) = (pi(6;t), i € S) is taken here to be the
stationary distribution as we assume the process is in
stationarity. Given a set af observations;, = m(ty)

(k = 1,...,s) of the state of the process at times

(0 < )t < --- < tg, the likelihood of observing
them is .
L) = pi, (0;t1) [ [ pin_via G5t —ti1) . (1)

k=2

We may then calculate the maximum likelihood
estimator (MLE)§of the paramete® by maximising
the likelihood [1) over the parameter spaée
for the given observations. As noted previously,
the transition function cannot usually be evaluated
explicitly, but progress can be made by computing
the transition probabilities numerically. This,
combined with a numerical search algorithm over the
parameter spac®, allows us to compute the desired
MLE, provided it exists. For results concerning
identifiability, and of existence and uniqueness, of
the maximum likelihood estimator, we refer readers
to Bladt and Sorensen (2005); essentially non-
existence occurs when the sampling interval is too
large in comparison to the rate of process dynamics.

To compute the required matrix exponentials, we use
the mexpv andpadmfunctions from the EXPOKIT
package (Sidje, 1998) for MATLAB. Any one of a
range of numerical optimisation techniques can be
used to maximise[11). We use tlross-Entropy
Method (Rubinstein and Kroese, 2004), which has
proved to be particularly effective for maximizing the
likelihood functions that we consider (Ros$ al,
2006). This combination provides a useful tool for
fitting continuous-time Markov chains to real systems,
provided that the parameter space and the maximum
population size is not too large. Thus, the method is
typically ideal for calibrating models to hospital wards
when modelling nosocomial infection dynamics and
when assessing the efficacy of management strategies.

3 DYNAMIC BED OCCUPANCY

In this section we present a new stochastic model
which explicitly models dynamic bed occupancy, and
thus overcomes a limitation of methods currently
in use (e.g. Pelupessst al, 2002 & Cooper and
Lipsitch, 2004).

Our model is a two-dimensional continuous-time
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Markov chain defined as follows. Denoting byt)
andm(t), respectively, the number of occupied beds
and the number of colonised patients at tirme
{p(t) = (n(t),m(t)), t > 0} is assumed to be a
Markov chain taking values it = {(n,m) : 0 <

m < n < N} with non-zero transition rates

q((n,m),(n,m+1)) = %m(n —m),

corresponding to colonisation of a patient within the
ward,

q((nam)a (TL + 17 m+ 1)) = 71{n<N}V7

corresponding to a colonised individual

admitted to the ward,

being

q((n, m), (TL —1,m— 1)) = p1m,

corresponding to a colonised patient being discharged
from the ward,

Q((nv m)v (n =+ 17m)) = 71{n<N}(1 - V)a

corresponding to a non-colonised individual being
admitted to the ward and

q((nv m)v (n - 17m)) = :LLQ(n - m)v

corresponding to a non-colonised patient being
discharged from the ward; the total number of beds in
the ward is denoted h¥ with the parameters andv

as before being the colonisation rate and probability
of a new patient having already been colonised on
admission, respectively, and, u2, v and1y., are,
respectively, the rate at which colonised patients leave
the ward, the rate at which non-colonised patients
leave the ward, the rate of admission of new patients
and the indicator function (which takes the value one
when{-} is satisfied and zero otherwise).

We note that explicit modelling of bed occupancy
allows for a more realistic model of infection
transmission. Firstly it incorporates dynamic bed
occupancy, and thus removes the need for the
assumption of full ward occupancy, and its conse-
quential effect on the rate of disease transmission.
Additionally it allows for different rates of discharge
of colonised and non-colonised patients, thus allowing
a wider range of nosocomial infections to be
modelled.

We also note that the rates of discharge and

1o, and the rate of admission, may be estimated
from hospital administration data, and thus the
only parameters requiring estimation from counts of
symptomatic individuals are the rate of transmission
B and the probability of being already colonised
on admissiorw. Estimation of these parameters is
undertaken as outlined in the previous section — the
specific parameters used are presented in the Results
section to follow.



In the Results section, we also compare the results
of estimation using the model presented above

(with equal rates of dischargey o, for

fair comparison) to the model used by Cooper and

Lipsitch (2004) which assumes full ward occupancy.

This comparison is used to deduce conditions under
which it is necessary to incorporate dynamic bed

occupancy, and thus when it is necessary to use the
methodology we have presented here.

4 PARTIAL OBSERVABILITY

In this section we present a new stochastic model
which explicitly models the partial observability
process, and discuss how this may be used for
parameter estimation from counts of symptomatic
individuals.

For clarity of exposition we present our method
with respect to the one-dimensional model used by
Cooper and Lipsitch (2004). However, the method
may be equally applied to any model, including
the dynamic bed occupancy model presented in the
previous section — all we are doing is dividing
colonised patients into two classes: those that display
symptoms, and those that do not.

Our modified model is a two-dimensional continuous-
time Markov chain defined as follows. Denoting by
m(t) andn(t), respectively, the number of colonised
patients and the number of symptomatic patients at
time ¢, {p(t) = (m(¢),n(t)), t > 0} is assumed to
be a Markov chain taking values i = {(m,n) :

0 < n < m < N} with non-zero transition rates

q((m,n), (m+1,n)) =

%m(]\f —m)+vu(N—m)| (1-19),
corresponding to colonisation of a patient who does
not display symptoms, or discharge of a non-colonised
patient and admission of a colonised, asymptomatic
patient,

g((m,n),(m+1,n+1)) =
5

Nm(N —m)+vu(N —m)| 0,

corresponding to colonisation of a patient who
displays symptoms, or discharge of a non-colonised
patient and admission of a patient who displays
symptoms,

Q((m7n)a (m - 13 n)) = (1 - V),LL(’/TL - n)a
corresponding to discharge of a colonised, asymp-
tomatic patient and admission of a non-colonised
patient,

Q((mvn)v (m —-1n- 1)) = (1 - V),una

2942

corresponding to discharge of a symptomatic patient
and admission of a non-colonised patient,

q((m,n), (m,n +1)) = vu(m —n)s,

corresponding to discharge of an asymptomatic
patient and admission of a symptomatic patient and

q((m,n), (m,n —1)) = vun(l —9),

corresponding to discharge of a symptomatic patient
and admission of a colonised, asymptomatic patient;
0 is the probability of a colonised patient being
symptomatic, and thus identified as colonised, and all
other parameters are as for the original model3—

is the colonisation rate is the per individual rate of
discharge from the ward, andis the probability of a
new patient being already colonised on admission.

We use the marginal distribution of this process for
parameter estimation since we only have data on the
number of symptomatic patients(¢) (the second
dimension of the process). More specifically, we find
0 = (8, v,0) which maximises the likelihood

N
LO) = | Y pgan(0;t1)

J=t1

N N
D D PG i G5tk — )

J=ik—_1 l=iy

S

[1

k=2

We note that our approach to incorporating partial
observability imposes a specific mechanism upon the
observability process — namely a fixed probability

of being symptomatic for every colonised patient.

However, this mechanism should be ideal for

nosocomial infection modelling, and additionally, as

mentioned, it has the advantage of accounting for
dependencies between symptomatic individuals.

A comparison of this approach to the hidden Markov
approach of Cooper and Lipsitch (2004) will be
undertaken in the next section.

5 RESULTSAND DISCUSSION
5.1 One-dimensional Model

Before progressing to our investigation of dynamic

bed occupancy and partial observability, we first

perform an investigation of the one-dimensional

model used by Cooper and Lipsitch (2004) to assess if
there is any bias in the procedure.

The data used consists of 20 independent simulations
of the model, using parameters: colonisation rate
8 = 0.255, per patient rate of leaving = 0.125,
probability of a new patient being already colonised
on admissiony = 0.028 and N = 16 beds; the units

for rates are days'. These parameters are in the range
of typical values for nosocomial infections (Cooper
and Lipsitch, 2004).



Each data set was collected by starting a simulation
in statem(0) 10 corresponding tal0 colonised
patients, and the simulation was run for approximately
17,200 transitions (corresponding to approximately
10,000 days of data). The measurements were then
taken daily, and the finab = 50 days worth of
data taken as the data set. This method will produce
data which is distributed approximately stationary;
one could calculate the stationary distribution of the
process and take the initial state of the simulation
from this distribution and simulate for the desired data
set length, but this makes little difference here and
simulations are relatively cheap.

The unknown parameters requiring estimation are
colonisation ratg3 and probability of a new patient
being already colonised on admission with g
assumed to be known (estimated) precisely. The
minimum, maximum, median and mean of the
parameters estimated from theg8e data sets are
presented in Table 1.

8 1%
Minimum | 0.0000| 0.0088
Maximum | 0.3399| 0.3298
Median 0.1646| 0.0779
Mean 0.1739]| 0.1159

Table 1. Parameter estimates using the model used
by Cooper and Lipstich (2004); true parameters:
colonisation rate3 = 0.255 and probability of a
patient being already colonised on admission=
0.028.

In Figure[l we plot all 20 estimates (crosses), the
mean (circle), the median (square), the true value
(dot), along with 50% (dotted) and95% (solid)
confidence ellipses; the ellipses are drawn using
the covariance matrix of the 20 joint estimates.
We note that maximum likelihood estimators are
asymptotically normally distributed, so confidence
ellipses may also be derived using this fact
(Ross et al, 2006), and additionally via other
approaches (Cooper and Lipsitch, 2004).

These results suggest that the estimation procedure is
biased, even using a data set0fdaily observations.

In particular estimates appear to underestimate
the contribution of within-ward transmission, and
overestimate the contribution from imported infection.
However, we note thdtof the20 estimates fop were
within £10% of the true value; onlyt of the 20 were
within £30% of the true parameter value for

5.2 Dynamic Bed Occupancy

We now investigate the accuracy of estimates using
our dynamic bed occupancy model. The data
used consists of 20 independent simulations for the
dynamic bed occupancy model, using parameters:
colonisation rate3 = 0.255, per colonised patient
rate of leavingu; = 0.125 and per non-colonised
patient rate of leavingi. = 0.125, probability of a
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Figure 1. Maximum likelihood estimates off3, v)
(crosses) along with the mean (circle), median
(square) and true (dot) parameter values, and
confidence ellipses5(0% (dotted),95% (solid)) using
the model used by Cooper and Lipsitch (2004).

new patient being already colonised upon admission
v = 0.028, rate of admission of new patienis= 2
and N = 16 beds; once again the units for rates are
days!.

Each data set was collected using the same approach,
simulating for10, 000 transitions from the initial state
(n(0),m(0)) = (10,10) and taking the last = 50

days worth of data. Due to space limitation we cannot
present these data sets here, however we note that
there exists a large amount of variation within, and
between, them.

The unknown parameters requiring estimation are
colonisation rate3 and probability of a new patient
being already colonised on admissien with all
other parameters assumed to be known (estimated)
precisely. The minimum, maximum, median and
mean of the parameters estimated from thxsdata
sets are presented in Table 2.

I} 1%
Minimum | 0.0000| 0.0105
Maximum | 0.2956| 0.2864
Median 0.1602| 0.0446
Mean 0.1702| 0.0899

Table 2. Parameters estimates using the dynamic bed
occupancy model; true parameters: colonisation rate
£ = 0.255 and probability of a patient being already
colonised on admission = 0.028.

These results demonstrate that there is a large degree
of variation in the estimates and it appears that the
estimates are again biased. Thus, when this method
is used in practice, a simulation study such as this
should be performed with parameters in the region
of interest; biased corrected estimates may then be
provided. We note that increasing the length of the
observations will reduce bias. We also note, for future
reference, that it appears that the colonisation rate
[ is again underestimated and the probability of a



new patient being already colonised on admission
is again overestimated.

In Figure[2 we plot all 20 estimates (crosses), the
mean (circle), the median (square), the true value
(dot), along with 50% (dotted) and95% (solid)
confidence ellipses; the ellipses are drawn using the
covariance matrix of the 20 joint estimates.

0.4

0.3

0.2

0.2
I

0.3 0.4

Figure 2. Maximum likelihood estimates off3, v)
(crosses) along with the mean (circle), median
(square) and true (dot) parameter values, and
confidence ellipses50% (dotted),95% (solid)) using

the dynamic bed occupancy model.

We now use only data on the number of colonised
patientsm(t) from these20 data sets, and estimate
the colonisation rates and probability of a patient
being already colonised on admissionusing the
one-dimensional model used by Cooper and Lipsitch
(2004). This is to assess the impact of ignoring
dynamic bed occupancy for parameter values used in
our simulations. The minimum, maximum, median
and mean of the parameters estimated from tRése
data sets are presented in Table 3.

3 D
Minimum | 0.0000| 0.0092
Maximum | 0.1966| 0.2884
Median 0.1298| 0.0681
Mean 0.1218]| 0.0964

Table 3. Parameters estimates using the one-
dimensional model used by Cooper and Lipsitch
(2004), from20 simulated data sets from the dynamic
bed occupancy model; true parameters: colonisation
rate 3 = 0.255 and probability of a patient being
already colonised on admission= 0.028.

In Figure[3 we plot all 20 estimates (crosses), the
mean (circle), the median (square), the true value
(dot), along with 50% (dotted) and95% (solid)
confidence ellipses; the ellipses are drawn using the
covariance matrix of the 20 joint estimates.

We note that ignoring dynamic bed occupancy has
resulted in estimates which are further biased; the
colonisation rate3 is further underestimated by, on
average, an additiondl.0484, and the probability
of a patient being already colonised on admission
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Figure 3. Maximum likelihood estimates off3, v)
(crosses) along with the mean (circle), median
(square) and true (dot) parameter values, and
confidence ellipses5(0% (dotted),95% (solid)) using
the one-dimensional model used by Cooper and
Lipsitch (2004).

is slightly further overestimated by, on average, an
additional0.0066. This shows that ignoring dynamic
bed occupancy can result in incorrect estimates. The
underestimation of colonisation rafe is expected
whenever full ward occupancy is assumed and not
actually realised in the data; this can be seen from
inspection of the form of the models infection rate.
Here we have assumed a rate of admissjor- 2,
which corresponds to a lapse, on average,l (i

a day before an empty bed is re-occupied. This
is not an unrealistic assumption for some wards
and demonstrates that care must be taken when
estimating parameters for systems in which dynamic
bed occupancy is a true feature of the system.

5.3 Partial Observability

We now investigate the accuracy of estimates using
our partial observability process, and compare these
to estimates using the hidden Markov model approach
of Cooper and Lipsitch (2004). The data used
consists of 20 independent simulations of the partial
observability model, using parameters: colonisation
rate 6 = 0.255, per patient rate of leaving
0.125, probability of a colonised patient presenting
symptomsd = 0.75, probability of a new patient
being already colonised on admissionr= 0.028 and

N 16 beds; the units for rates are once again
days™.

Each data set was collected using the same approach,
simulating for10, 000 transitions from the initial state
(n(0),m(0)) = (10, 10) and taking the last = 50

days worth of data.

The unknown parameters requiring estimation are
colonisation rates, probability of a new patient being
already colonised on admissienand the probability

of a colonised patient being symptomadicwith all
other parameters assumed to be known (estimated)
precisely. The minimum, maximum, median and
mean of the parameters estimated using our partial



observability method applied to the2e data sets are Future work will investigate the number of ob-
presented in Table 4. servations required such that reliably consistent
= and accurate estimates may be obtained using
— s v 0 our partial observability process. We are also
'V“”'T"“m 021151 0.0000 0.0062 investigating methods to overcome another limitation
Mag!mum 1.201 1 1.0000| 0.8065 encountered whenever using Markov chains for
mgalr?n 8;;22 82332 82233 parameter estimation purposes: “when the state space
. . . becomes large (corresponding to a large number of
Table 4. Parameter estimates using the partial beds) the algorithm becomes slow and numerical
observability process; true parameters: colonisation problems may occur.” (page 234, Cooper and Lipsitch,
rate3 = 0.255, probability of a patient being already  2004).
colonised on admissiom = 0.028 and probability of
a colonised patient displaying symptoms- 0.75.
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Once again a large amount of variation exists in these Biol.. 70:498-510. 2006.

estimates. The colonisation rafeis overestimated, R.Y. Rubinstein and D.P. Kroes@he Cross-Entropy
and typically substantially, in all data sets. Similarly Method: A Unified Approach to Combinatorial
the probability of a new patient being already Optimization, Monte-Carlo Simulation, and Ma-
colonised on admissions is overestimated, and chine Learning Springer-Verlag, New York, 2004.

substantially, in all data sets, with almost all estimates R.B. Sidje. EXPOKIT. A software package for com-

close tol. These results suggest that the estimates puting matrix exponentials.ACM Trans. Math.
provided in papers using the above hidden Markov Software 24:130-156, 1998.
model approach need to be viewed with care.
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