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Figure 1 a & b; Graphs showing the variations in  
a: ammonia and nitrate, b: temperature and 

dissolved oxygen (DO), along the Long Bay-Okura 
Marine Reserve in northern Auckland, New 

Zealand 
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EXTENDED ABSTRACT 

Using stochastic models of discrete-time data and 
continuous-time series graphs of average values 
(e.g., annual or monthly) modellers are able to 
analyse many natural systems and phenomena. 
These models provide decision and policymaking 
management with information on the system and/or 
phenomenon being studied. Nonetheless, since the 
middle of last century modelling needs have 
changed significantly. The focus is towards 
analysing the ecological dynamics of natural 
habitats during extreme events (i.e. heavy flooding) 
that could no longer be modelled using discrete-
time data on normal conditions or average values. 
For example, information relating to the extent of 
the detrimental effects on a coastal habitat biota due 
to infrastructure failures resulting from storm water 
overflows, the causal factors (i.e., local and/or 
global) or on how these factors influence the system, 
is required to resolve resource and infrastructure 
management and land development issues. 

 

In the case of Long Bay Okura-Marine Reserve in 
northern New Zealand, ecological data available is 
inconsistent (in different formats) and this makes 
ecological dynamics modelling of the coastal 
habitat extremely difficult. The state institutions, 
such as Auckland Regional and North Shore City 
Councils, monitor beach water quality with many 
sampling locations along the northern coast of 
Auckland. Academic institutions as well carry out 
ad-hoc monitoring programmes in the Reserve 
(established in 1995) for scientifically validating 
the anecdotal evidence on the effects of 
urbanisation along this coastal habitat (figure 1). 
However, collectively analysing these data sets to 
model the ecological dynamics of this complex 
coastal system remains a difficult task. The city 
council efforts to study the effects of urbanisation 
along the beach with conventional methods show 
the need for better tools and data at frequent 
intervals on extreme conditions i.e., heavy rains. 

Previous research into ecological dynamics 
modelling using Kohonen’s self-organising map 
(SOM) techniques as applied to the monitoring and 
control of highly complex and diverse systems in 
industrial engineering, and their limitations  (figure 
2a) are explained. Finally, the paper explores some 
simple and complex statistical methods for 
resolving the issues encountered in ecological 
dynamics modelling of a coastal habitat using SOM 
techniques and discrete-time data from the Okura-
Marine Reserve (figure 2b). 

 

Figure 2 a & b: Kohonen’s Self-organising map 
(SOM) of environmental and biological system 

data collected at irregular intervals. a: SOM 
trajectory of original data with huge gaps - 

difficult to study the ecological dynamics of Long 
Bay-Okura Marine Reserve.  b trajectory - run 
with interpolated data calculated using simple 
statistical methods, shows promising results. 
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1. INTRODUCTION 

Ecological dynamics modelling that continues to 
evolve is currently in need of novel approaches to 
meet modern day’s demands of resource and 
infrastructure management. The use of stochastic 
modelling techniques with discrete-time data and 
continuous-time series graphs of average values is 
increasingly becoming inadequate in solving 
contemporary resource and utility service 
management as well as development issues. Most 
of the issues involve natural system behaviour 
during extreme conditions, such as flooding due to 
heavy rains. Since the middle of last century, more 
so in the last decade analysing data on 
anthropogenic factors, local as well as global, 
integrated with their environmental effects, within 
an ecosystem framework has become a vital issue 
in making decisions relating to a city’s 
infrastructure maintenance and upgrade. For 
instance, information on the effects of global 
warming and climate change on a city’s public 
utilities i.e., water supply and quality when a 
month’s rain fall is experienced on a day, is 
required to strengthen the infrastructure systems 
and services (Jollands, et al. 2007).  

2. NEW ZEALAND EXAMPLES 

The paper initially looks at two recent examples 
from New Zealand that best illustrate the urgent 
need for models that provide information on the 
ecological dynamics/ systems behaviour of 
complex natural habitats under conditions never 
modelled before (i.e., extreme climatic conditions 
or extensive land development). The second part of 
the paper explores the use of statistical methods to 
enhance modelling natural system changes within 
an ecosystem framework by further developing 
Kohonen’s self-organising map (SOM) based 
techniques using discrete-time data from multiple 
sources on a coastal habitat from northern New 
Zealand, the second example. 

2.1. Hamilton infrastructure systems and 
services (ISS) 

Jollands, et al. (2007) elaborated upon the data 
needed to model infrastructure systems and services 
(ISS) in Hamilton, New Zealand, to resist the 
adverse effects of climate change. The authors 
pointed out the need to use of daily levels instead of 
monthly time step when modelling the effects of 
climate change, its environmental impacts on the 
infrastructure for future research. The models of 
shorter time intervals could provide more 
information on the peak events, their frequency, 
impact on the infrastructure and specifically, the 
connections between the factors analysed for the 

determination of the services and the systems 
concerned. The important aspect discussed in the 
Hamilton study, also relevant to this research, is the 
lack of data on extreme conditions. This is a major 
impeding factor in modelling any public service 
infrastructure strength adequate to withstand the 
conditions or preserving natural habitats. It is 
significantly critical in modelling an extreme 
scenario relating to a natural habitat, as the 
environmental effects caused by a change are non-
linear, highly complex and more importantly 
inherent to the habitat being analysed. 

2.2. North Shore utility services and 
infrastructure 

In northern New Zealand, North Shore’s rapid 
population growth led the City Council to study the 
impacts of immediate growth (up until 2005 and 
beyond) on its utility service infrastructure. The 
impetus for this was “To establish and meet the 
community’s beach water quality expectations” 
using sampled data from sewer, storm water 
systems and the beaches, including an Wastewater 
Treatment Plant ocean outfall (Heijs, 1999a: 3). 
Among the council’s efforts initiated, project 
CARE was set up in response to pure pressure from 
the public to analyse the water pollution levels 
within the city’s wastewater network caused by 
operational problems experienced due to flows over 
design capacity in its fast growing East Coast Bays 
and Oteha Valley Area regions (Heijs, 1999 a & b).  
The City Council began its water quality 
monitoring along the city’s east coast with an aim 
of finding the sources of bacterial pollution and its 
impacts on the beaches. It did not include any other 
factors, such as sediments, nutrients, heavy metals 
and petroleum hydrocarbons, also identified as 
major contributing factors for the prevalent 
biodegradation in the coastal habitat. Heijs (1999b) 
having identified the use of average values of any 
relevant parameters as insufficient under typical 
wet weather conditions observed, used total data, 
such as number of hours that exceeded certain 
conditions i.e., average recurrence interval (ARI), 
i.e., ARI of 6 months or Enterococci count 
exceeded 100Ec/100ml, in his study. 

Given that background on New Zealand’s North 
Shore City Council efforts and the data issues in 
modelling the ecological dynamics of the city’s 
costal habitats, the next section looks at the 
academic research conducted in a Reserve located 
along the same coast. 

3. ECOLOGICAL SYSTEM MODELLING 

Research leading up to the investigation into the use 
of SOMs to model the ecological dynamics of the 
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Long Bay-Okura Marine Reserve illustrate the 
compelling requirement for better information on 
the cause and effects of this system. “Stochastic 
urban accretion (SUA)” is the term Buckeridge 
(1999) used to describe the environmental situation 
in reference to the apparent lack of planning within 
city development on North Shore. The city council 
authorities failed to anticipate the significant impact 
caused upon the surrounding environment, 
especially on the coastal environment due to rapid 
urbanisation since the early 1990s and continued 
with granting permissions for new land 
development projects. The lack of any monitoring 
of environmental change and improper impact 
assessment on proposed development increased the 
load on the existing public utility infrastructure 
beyond its capacity, Heijs (1999a) as well pointed 
out this (see section 2.2 for details). As a result of 
the increased load on the services silt runoff and 
sewage infiltration continued to cause degradation 
to biodiversity at Long Bay until the late 1990s, 
without any measures being taken to improve the 
services such as ageing sewage, storm water 
systems and roading. Couriel et al. (2000) identified 
the following from the sewage and storm water 
systems that contributed to the degradation in 
coastal and marine biodiversity: 

• continuously increasing wastewater 
pumping station overflows,  

• storm water leaks into wastewater 
systems, 

• storm water infiltration into wastewater 
systems and  

• wastewater leak into ground water.  

In view of the above stated need for better methods 
to analyse the highly complex coastal habitat, 
Shanmuganathan (2004) investigated into the use of 
self-organising map (SOM) based techniques to 
model the ecological dynamics of this Reserve’s 
intertidal zone using multi-sourced discrete-time 
data as applied to industrial system process 
modelling. The next section gives an outline of this 
approach and the issues encountered in this regard. 
Consequent sections discuss simple statistical 
methods that show promising results to overcome 
the major constraint faced in modelling the 
ecological dynamics of complex habitats.  

3.1. SOMs in ecological system modelling 

In previous work, Shanmuganathan et al. (2001) 
illustrated how SOM methods could be best applied 
to analysing often ‘cryptic’ ecosystems in a manner 
similar to that applied in modelling highly complex 
and diverse industrial system processes for product 
quality/ cost optimisation purposes by Simula et al. 

(1999). A SOM is a single layered artificial neural 
network with an unsupervised training algorithm. 
Unlike supervised neutral nets, SOM techniques 
enable analysts to model multi dimensional data 
even without knowing their class membership.   At 
the end of the SOM training process, similar data 
points (e.g., with similar vectors) within the 
complex data set being analysed are projected onto 
a low dimensional output layer with details in the 
raw data preserved.  Hence, SOMs provide an 
excellent tool for visualising multidimensional data 
sets on low (usually 1 or 2) dimensional displays 
otherwise found to be difficult with standard 
statistical methods. Standard statistical methods are 
good at studying simple statistics (i.e., mean, 
standard deviation and so forth) of low dimensional 
data sets.  On the other hand, rigorous statistical 
methods are not useful in analysing disparate data 
sets retrospectively and integrated. 

In the original research on the Long Bay-Okura 
Marine Reserve, the SOM based data analysis 
produced promising results. A SOM created with 
reserve’s physical and biological system data (multi 
sourced and discrete in time) distinguished the 
various littoral layers (lower supra, upper, mid and 
lower littoral) within the intertidal zone and their 
changes  along with the underlying reasons for the 
different changes observed (figures 3 a-d) even 
though the data set had many missing values.  The 
following are the three main clusters of the SOM 
created with 2000 nodes (figure 3 a); 

C1:  lower supra & upper littoral 

C2:  mid & lower littoral 

C3: data from the above two with undesirable 
conditions (ecosystem state) with low DO, 
high nitrate, high temperature and high 
Enterococci count values. 

The SOM components (figures 3c) show the factors 
for the SOM clustering observed (figures 3 a & b).  
SOM cluster (C1-C3) profiles (figure 3c) show the 
major difference between them. 

3.2. SOMs in ecological dynamics modelling 

In addition, Simula et al. (1999) illustrated the use 
of SOMs to track industrial system dynamics and it 
is possible to apply the same to modelling the 
ecological dynamics of natural habitats using 
continuous-time series data. In a SOM, as it 
preserves even minor details, a small change in one 
of the attributes of a data point would move the data 
to a different position from its current one in the 
SOM map.  This is useful in tracking the ecological 
dynamics of complex natural systems.   
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With this feature, Simula et al. (1999) predicted 
complex industrial system process failures by 
running the systems vital parameter readings 
recorded online (i.e., running a set of time series 
data,  on a SOM created with the systems process 
data previously recorded on/off line). This is a 
successful approach applied to modelling complex 
process dynamics, such as, electric/ manufacturing 
plant entry towards any failure in advance, provided 
there is sufficient reliable digital data on the 
process. Hollmen and Simula (1996) as well as 
Simula et al. (1999) predicted the output quality of 
a manufacturing system process using the 
measurements of incoming raw material 
characteristics and process parameter settings. 
However, when applied to running the Long Bay 
time series data sets of this coastal habitat the 
trajectories failed to produce a smooth progress due 
to huge gaps in the data sets (figures 1a & 3a). The 
reasons for the gaps in the data set analysed herein 
are, firstly, it had water quality monitoring data 
sampled 3-4 days consecutively and then with a 5-6 
day gap before next water sampling. Secondly, 
biologists who observed the growth/ death of 
sciaphilic organisms, took photographs of four m2 

sized  monitoring stations (figure 4 a-d) on a 
monthly basis and this makes collective analysis of 
the two sets of data impossible with conventional 
methodologies (see figures 1 a, b & 2/3 a).  

4. STATISTICAL METHODS WITH SOM 
BASED ECOLOGICAL DYNAMICS 
MODELLING 

The paper explores the use of two common 
statistical methods, they are: 1) interpolation of 
extra data points using a simple formula (1) and 2) 
the use of multiple regression analysis to study the 
trends in nitrate and ammonia data collected. 
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Figure 3 b, c & d; b: trajectory - run with 
interpolated data calculated using formula (1).     

c: SOM components showing the different cluster 
profiles.  d: cluster profiles showing the variations 

in ammonia, turbidity and Enterococci count 
among the different littoral layers within the 
intertidal zone at Long Bay’s Okura Marine 

Reserve in northern New Zealand.  Please note C3
is an undesirable area (ecosystem state) with low 

DO, high nitrate, high temperature and high 
Enterococci count values.  C1 consists of lower 
supra & upper littoral near land whereas C2 has 

mid & lower littoral mostly. 

Figure 3 a. trajectory of upper littoral data with 
huge gaps - difficult to track the ecological 

dynamics of the Long Bay-Okura Marine Reserve 
on a SOM map (2000 nodes) using the reserve’s 

physical and biological system data. 
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4.1. New points added  

New data points added to the original time series 
data set, using a simple formula (1) enhance the 
ecological dynamics modelling of this complex 
coastal habitat. The new sets of points between 
observations were added beginning with the 
missing i+1st value for the jth variable, where a gap 
in the recording of the values exists (as in Table 1). 
The trajectory ran using the new data set (with 
original and added), looks more smooth and useful 
in studying the upper littoral (within the intertidal 
zone) ecological dynamics of the Long Bay-Okura 
Marine Reserve (figures 2/3 b).                              

a i+1, j = a i , j + (a M, j – a F, j )/(M-F)  F<i<M        (1) 

where the variable 'a' is the value and 'M' is the row 
number of the observation prior to the gap and F is 
the row following the gap.  

4.2. Prediction of dependent variable values 

In this section, multiple regression analysis is 
performed to predict a dependent variable values, 
firstly nitrate (Nit mg/l) and then ammonia (AMM 
mg/l) using the other determinant variables, 
temperature (Temp oC), pH, specific conductivity 
(Sp ms/cm), turbidity (mg/l), dissolved oxygen (DO 
mg/l) and ammonia/ nitrate. The nitrate and 
ammonia values predicted are then plotted against 
real values (figures 5 a & b) in which, nitrate values 
look good with daily data (in the centre of the 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4 a-d: photographs of a: lower supra, b: 
upper, c: mid & d: lower littoral within the 

intertidal zone showing their characteristic zoning 
of sciaphilic organisms (that encrust the rock 

surfaces). Sediments and pollutants from 
urbanisation cause extensive degradation in these 
organisms by smothering & blocking their filter 

feeding systems, such as in barnacles. 

 
 

Table 1: original water sampling data of upper 
littoral of the Okura Marine Reserve. 

 
 
 
 
 
 
 
 

 

 

 

Table 2: multiple regression details of nitrate & 
ammonia predicted from temperature, specific 

conductivity, dissolved oxygen, pH, turbidity and 
ammonia/ nitrate of the upper littoral zone 

Regression 
Statistics  

Nitrate    Ammonia 

Multiple R 0.922149 0.948294259 
R Square 0.85036 0.899262002 
Adjusted R 
Square 

 
0.722096 0.812915146    

 
Standard Error 

 
2.9148 4.389336007 
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graph) and the weekly ones are not (at both ends of 
the graph). However, the ammonia values show 
good results throughout (see Table 2 for stats).  

Finally, nitrate and ammonia trends are analysed 
with graphs plotted using the new data set 
(measured and added points calculated using 
formula (1)) as well as multiple regression 
prediction values (see figures 6 a & b).  Of the two 
graphs, nitrate values calculated are more close to 
that of the real and so is the trend however in 
ammonia it is the opposite. During biological 
decomposition, ammonia is transformed into nitrate 
utilising dissolved oxygen, and this could be 
calculated in freshwater systems but not in coastal 
waters due to complexity issues arriving from 
oceanographic factors (Wilcock and Stroud 2000) 
and furthermore, nitrate being converted into 
ammonia (McElroy, 2002). Based on the results 
nitrate prediction is possible using the variables 
analysed herein nonetheless ammonia is not. 

Along the beaches, nitrogen and phosphorous that 
reach the coastal environment cause for the 
lowering of DO or hypoxia. Such eutrophic 
conditions affect the growth of marine organisms at 
times leading to major alternations in the ecosystem 
structure. Buckeridge (1999) illustrated the major 
changes observed in species composition of the 
Reserve’s coastal habitat, which led to extinction of 
a species Balanus trigonus locally in the late 1990s.  

5. DISCUSSION 

Natural systems are highly complex and extremely 
diverse; they are open systems with dynamic 
equilibration, the more we know about them the 
greater the complexity revealed and difficulty in 
modelling them (Shanmuganathan 2004). Despite 
this dilemma, scientist and engineers are required to 
transform data into useful information no matter 
how discrete the data sets are, for critical decision-
making relating to infrastructure development and 
maintenance. Failure to do so has resulted in 
significant biodegradation, in the case of Long Bay-
Okura Marine Reserve. Furthermore, the poor 
beach water quality observed has led to health 
hazards along the beaches of North Shore in New 
Zealand. The use of SOM based approach to 
modelling the ecological dynamics of this complex 
coastal habitat as applied to that of industrial 
processes has its limitations because of the gaps in 
the data (see section 3.2).  Nonetheless, the SOM 
trajectory of the Long Bay upper littoral intertidal 
zone data set with new interpolated values 
generated using a simple statistical technique, 
produced good results. Multiple regressions as well 
showed satisfactory results with potential for 
modelling discrete data of complex natural habitats. 

6. CONCLUSION 

In summary, the two examples outlined in the paper 
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clearly pointed out the growing demand for models 
on natural systems as well as phenomena under 
extreme conditions that require data at shorter 
intervals and in the case Hamilton case study 
conditions never experienced before, to increase the 
strength of infrastructure to maintain utility services 
uninterrupted. This involves people’s daily life as 
seen all over the world, and in the last decade, such 
interruptions caused by heavy flooding are on the 
increase.  It is the same with pollution along the 
beaches. Unless proper mitigation measures are, 
taken biodegradation could cause unprecedented 
loss that could affect future generations.  From the 
two examples, the need to model natural system 
behaviour under conditions never modelled before 
is evident and this needs to be performed using 
discrete data available.  This is of utmost 
importance for appropriate decision-making 
relating to infrastructure upgrade and maintenance. 
The SOM based trajectories approach with added 
points to a set of inconsistent and incomplete data 
set using simple statistical techniques shows 
potential.  

Natural systems are so complex they could neither 
be modelled using linear parameters (Clark et al. 
2001) nor uncertainties relating to their behaviour 
resolved using simple models (Stewart-Oaten 
1996). Hence, ecologists and modellers are required 
to develop models and techniques to study the 
ecological dynamics of natural habitats identifying 
the factors that give an indication of the prevalent 
trends within the whole system or with a systems 
approach using the existing discrete-time data sets. 
The paper provided a useful means for this using 
SOM based approaches with simple statistical 
methods, the former as applied to industrial process 
dynamics modelling with proven success. The 
multiple regression technique explained in the 
paper as well produced satisfactory results in 
analysing the trends within natural habitat studied. 
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