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EXTENDED ABSTRACT 

Empirical mode decomposition (EMD), a 
relatively new form of time series decomposition, 
has the feature of not assuming a time series is 
linear or stationary (like Fourier analysis). In 
hydroclimatology, where most variables exhibit 
non-linear and non-stationary behaviour, this 
feature is particularly useful, allowing more 
meaningful quantification of the proportion of 
variance in a time series due to fluctuations at 
different time scales than previous spectral 
analysis techniques. However, in its original form 
the EMD algorithm relies on cubic spline 
interpolation, which is suspected of inflating the 
variance of the resultant Intrinsic Mode Functions 
(IMFs) and residual (trend). In this paper a 
potential improvement to the EMD algorithm is 
briefly outlined and its effect on an example is 
assessed. 

Rational splines are proposed as a potential 
improvement to the EMD algorithm. The rational 
splines are used in place of cubic splines for 
interpolating the maxima and minima envelopes 
within the EMD sifting process. Rational splines 
possess a parameter that enables the user to select 
the level of tension in the spline interpolation, 
ranging from cubic through to virtually straight 
line. By varying this tension parameter between 0 
(cubic) and 50 (virtually linear) a set of EMD 
decompositions were generated for the annual 
precipitation record of Melbourne, Australia, as an 
example for initial testing of the idea. 

The performance of the different decomposition 
sets was assessed based on the number of IMFs, 
the number of sifts required to extract each IMF, 
the total variance of the IMFs and the residual 
relative to the observed variance and the mutual 
orthogonality of the IMFs and residual. For the 
Melbourne annual precipitation time series, the 
cubic spline based EMD provided the least number 
of IMFs and the least number of sifts, indicating an 
efficient decomposition. However, the cubic based 
EMD had the highest variance sum for the IMFs 

and residual relative to the observed variance 
(+24%) and the IMFs and residual were not 
orthogonal. As the rational spline tension 
parameter was increased the IMF and residual 
variance sum decreased and approached parity 
with the observed variance at a tension value equal 
to 10. For the Melbourne annual precipitation time 
series, a rational spline based EMD with tension 
parameter set to 5 appears to give the optimal 
decomposition in terms of the number of IMFs, 
number of sifts total variance and the orthogonality 
of the IMFs and residual. 

This preliminary analysis shows that as the tension 
parameter increases the amount of variance 
associated with the IMFs and residual relative to 
the observed variance reduces as conjectured. This 
reduction in variance is also seen in the covariance 
terms, which improves the orthogonality of the 
EMD decomposition. Increasing the tension 
parameter has the desired effect of reducing the 
variance and covariance of the resultant IMFs and 
residual by progressively eliminating the well-
known tendency for the cubic spline to over- and 
under-shoot. 

This example also highlights the benefit of the 
rational spline variable tension parameter. This 
parameter can be modified to give decompositions 
that satisfy requirements of orthogonality, number 
of IMFs, number of sifts, etc, rather than the cubic 
spline based EMD which only provided a single 
decomposition. Before the introduction of rational 
splines to EMD, in cases where the cubic 
decomposition is poor, there was no other 
alternative, whereas now a range of reasonable 
decompositions is possible. 

This initial application demonstrates that the 
variance inflation is greatly reduced, but at the 
expense of a progressive increase in IMFs and 
sifting. The rational spline based EMD 
demonstrates useful features that will be further 
tested on a larger dataset. 
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1. INTRODUCTION 

Huang et al (1998) introduced Empirical Mode 
Decomposition (EMD) as the first part of a two 
part process for spectral analysis of non-linear and 
non-stationary time series. In stage one the time 
series is adaptively decomposed into a set of 
intrinsic mode functions (IMFs) and a residual, 
using the EMD algorithm, followed, in stage two, 
by a Hilbert transform of the IMFs. This two stage 
process has become known as the Hilbert Huang 
Transform (HHT) and is being increasingly used 
across a range of fields including hydrology and 
climatology (Gloersen & Huang, 2003; Sinclair 
and Pegram, 2005; Peel & McMahon, 2006). 

The motivation of Huang et al (1998) to introduce 
the HHT was dissatisfaction with traditional forms 
of spectral analysis, like Fourier and Wavelets, 
when applied to non-linear and non-stationary 
data. For example, the assumption behind Fourier 
analysis is that a time series can be decomposed 
into a set of linear, stationary and harmonic 
components. However, as the degree of 
nonlinearity and non-stationarity in the time series 
increases, the number of harmonics required to 
describe the time series increases. Many of the 
resultant components are physically meaningless 
harmonics. Attempting to remove the non-
stationarity, by de-trending the data prior to 
Fourier analysis, requires an assumption about the 
nature of the trend (linear, step change, other), 
which is usually unknown. 

The Fourier spectrum of a time series reveals the 
relationship between variance and frequency over 
the set taken as a whole, whereas the Wavelet and 
Hilbert spectrums reveal the relationship between 
variance and frequency over time. Huang et al 
(1998) note that the Hilbert spectrum provides 
much sharper detail than the Wavelet spectrum 
(based on the widely used Morlet wavelet) due to 
harmonics in the Wavelet spectrum. By contrast 
the local nature of the HHT does not smear energy 
over a range of frequencies and time, as in 
Wavelets. One of the main differences between 
EMD and Wavelets is the choice of a time 
invariant filter (wavelet function) in Wavelets, 
which is incapable of adapting to local variations, 
unlike EMD (Flandrin & Gonçalvès, 2004). 
However, Olhede & Walden (2004) note that 
Wavelets can provide comparable results to HHT, 
when appropriately chosen wavelet functions are 
used in combination with the Hilbert spectrum for 
non-stationary time series. 

In the context of the physical sciences, the HHT 
method is ideally suited since it does not require 
assumptions that time series are linear or stationary 

(usually it is not known if they are not). 
Furthermore, HHT does not require a detailed 
knowledge of wavelet functions, in order to select 
an appropriate one for the task at hand, rather the 
EMD algorithm is adaptive to the local conditions 
that present within the time series. 

In this paper an improvement to the EMD 
algorithm, the first part of the HHT process, is 
outlined and applied to demonstrate the impact of 
this change on the previous version of EMD. 

2. THE PROBLEM 

In the original EMD paper of Huang et al (1998) 
five areas of future research for improving the 
HHT methodology were outlined. The first area 
was the spline fitting used in the EMD sifting 
process to extract the IMFs. This sifting process 
consists of 4 steps: 

1. Identify the local extrema, both maxima 
and minima in the input time series; 

2. Fit splines to the sequences of maxima 
and minima; 

3. Take the mean of the two splines; 

4. Subtract the mean of the splines from the 
input time series of step 1. 

The difference from step 4 represents a residual 
and is an estimate of an IMF. If the input time 
series to step 1 were the original observed data, 
then the product of step 4 would be the first 
estimate of the first IMF. If the output from step 4 
did not satisfy the requirements for an IMF, then it 
would form the input to step 1 and the sifting 
process would be repeated until a residual was 
found that satisfied the requirements for an IMF. 

In Huang et al (1998), and in subsequent 
EMD/HHT papers, the spline fitted to the extrema 
in the EMD sifting process has been a cubic spline. 
However, cubic splines are known to exhibit over- 
and under-shoot problems (see Figure 1). Since the 
mean of the two splines is taken as step 3 of the 
sifting process, over- and under-shooting in the 
spline fitting procedure will transfer into the mean 
and therefore the estimate of the IMF. The 
potential for IMFs to be corrupted by the cubic 
spline over-shooting problem may be amplified by 
the iterative nature of the sifting process. 

The impact of using alternative interpolation 
techniques to cubic splines in EMD has not been 
adequately assessed. Huang et al (1998, page 988) 
mention that trials with taut splines, where a spline 
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tension parameter can be adjusted, showed only 
marginal improvement. Rilling et al (2003) 
suggested that cubic splines were preferred to 
linear or polynomial interpolation based on some 
unreported experiments. 

 
Figure 1. Section of the annual precipitation 

record for Melbourne Regional Office with 
maxima and minima cubic splines for the 
first sift of the first IMF. Over- and under-
shoots are indicated by arrows. 

3. ASSESSING ALTERNATIVES 

Before applying and testing an alternative spline 
methodology, it is important to know how to 
assess the impact of the alternative, relative to the 
cubic spline original, on the IMFs. Although there 
is no objective way to determine which set of 
IMFs are the best (Huang et al., 2003) there are 
three measures that can be used to inform which 
set of IMFs might be better. 

3.1. Number of Sifts 

As mentioned in the previous section sifting is the 
method used to extract the IMFs. As described in 
Peel et al (2005) the original definition of an IMF 
from Huang et al (1998) was that (1) the number of 
extrema (sum of maxima and minima) and the 
number of zero crossings must be equal or differ 
by one, and (2) the mean of the cubic splines must 
be equal to zero at all points. Since sifting is a 
recursive process, a sifting stopping rule is 
required. This stopping rule needs to halt the 
process when the residual satisfies the definition of 
an IMF, while also avoiding the following two 
concerns. 

Firstly, the sifting process reveals hidden riding 
waves in the input time series, which when 
identified change the number of extrema during 
sifting. If the process is halted prior to all of the 
riding waves being identified, then the residual 
may only temporarily satisfy the definition of an 
IMF, and subsequent sifting would reveal a 
significantly different IMF. This first concern can 

be addressed by sifting the residual until it is stable 
for several consecutive sifts. However, there is a 
trade off between the number of sifts and the 
second concern, which is that over-sifting tends to 
produce smooth amplitude IMFs where any 
physically meaningful amplitude variation has 
been sifted away. 

The sifting stopping rule used by Huang et al 
(1998), in their trials with taut splines and cubic 
splines, was a convergence criterion based on 
minimising the difference between residuals in 
successive sifts to below a predetermined level. 
However, this criterion did not explicitly take into 
account the two IMF conditions, so the 
predetermined level could be obtained without the 
two IMF conditions being satisfied (Huang et al 
2003). This lead Huang et al (2003) to propose an 
alternate stopping rule, used here, where sifting is 
conducted until IMF condition (1) is satisfied 
(number of extrema = number of zero crossings 
±1). At this sift, and each subsequent sift, the 
number of extrema and zero crossings are recorded 
and compared to those of the previous sift. When 
the number of extrema and zero crossings remain 
constant for five successive sifts, the sifting is 
stopped and the residual is designated as an IMF. 
If after any sift IMF condition (1) was not satisfied 
then the successive sift count would restart at the 
next sift where IMF condition (1) was satisfied. 
Huang et al (2003) found that IMFs produced 
using this sifting stopping criterion satisfied 
condition (i), were consistently orthogonal and 
were not over-sifted. 

A potential source of difference between the spline 
methodologies is the number of sifts required to 
define the IMFs. The method that requires the least 
sifts would be considered the better method, since 
this would reduce any over-sifting concerns. 

3.2. Number of IMFs 

The premise of EMD is to identify any intrinsic 
oscillatory modes within a time series and extract 
them as IMFs. 

As noted previously, there is no objective way to 
determine which set of IMFs is best. However, in 
general the EMD version that can decompose a 
time series into the smallest number of IMFs is 
likely to provide more physically realistic IMFs 
than a version that requires more IMFs. 

3.3. Orthogonal IMFs 

When assessing the quality of a set of IMFs, 
Huang et al (2003) used an orthogonal index to 
reject IMF sets that were non-orthogonal. 
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Although not strictly required by Huang et al 
(1998) in the non-linear case, IMFs and the 
residual component are generally expected to be 
orthogonal to each other. 

Ideally if the IMFs and residual are orthogonal the 
observed variance will equal the sum of the 
variances of the IMFs and residual, since the co-
variance terms will be zero, following 

Var(X) = ΣVar(IMFs + R) + 2ΣCov(IMFs+R), (1) 

where Var(X) is the variance of the observed data, 
Var(IMFs + R) is the variance of the IMFs and 
residual and Cov() is covariance of the IMFs and 
residual. 

Chiew et al (2005) and Peel et al. (2005) noted in 
applying EMD that the sum of the IMF and 
residual variances were on average 15% to 20% 
larger than the variance of the original time series, 
which indicates non-trivial covariance terms 
between the IMFs and residual. Peel et al (2005) 
suggested the sum of the variances being greater 
than the variance of the sum was due to a 
combination of rounding errors, the non-linearity 
of the original time series and the introduction of 
variance by the cubic spline, particularly at the end 
points. Another potential cause is the cubic spline 
over- and under-shooting throughout the entire 
record. 

Therefore the spline methodology that provides the 
smallest IMF and residual covariance terms 
(giving the more orthogonal IMFs and residual) 
would be considered the better method. 

4. RATIONAL SPLINES 

The alternative spline interpolation methodology 
introduced here is rational splines, which was 
proposed by the second author. A detailed 
explanation of the theory behind rational splines 
and their application to EMD is currently in 
preparation (Pegram et al., 2007). A brief summary 
of rational splines and an example of their use in 
EMD are provided below. 

4.1. Rational Splines in brief 

The impetus for using an alternative to cubic spline 
interpolation in the EMD algorithm was the over- 
and under-shooting often experienced with cubic 
splines. The rational spline has a variable tension 
parameter, P, which allows the tautness of the 
spline to be controlled. When P is set to 0, the 
rational spline defaults to a cubic spline. As P 
increases, the spline becomes less curved and more 
linear, until at values near 50 it becomes virtually 
linear between the extrema being interpolated. By 
varying P, the degree of over- and under-shooting 
can be controlled during the EMD process. 

Relative to exponential splines (another tension 
based interpolation scheme), Späth (1995) notes 
that rational splines are superior in terms of 
effectiveness and efficiency of computation. The 
tension spline concept is different to the taut spline 
approach, in that a single tension parameter is used 
to stretch the spline, whereas taut splines involve 
the introduction of extra nodes or knots to remove 
unwanted oscillations in a cubic spline. 

 
Figure 2. Section of the annual precipitation record for Melbourne Regional Office with maxima rational 

splines for a range of tension parameter values for the first sift of the first IMF. 2999



4.2. Maxima spline example 

In Figure 2 the rational spline has been applied to a 
section of the observed annual precipitation record 
for Melbourne. In the EMD sifting process, Figure 
2 represents the first sift of the first IMF for a 
range of P. The observed record is shown along 
with the local maxima and several rational splines 
with P ranging from 0 (cubic), 0.5, 1, 2, 5, 10, 20 
& 50 (nearly linear). The maximum envelope in 
the period 1900 – 1910 exhibits an over-shoot and 
an under-shoot in the cubic spline, which are 
progressively reduced as P is increased so that the 
rational spline becomes almost linear between the 
extrema. Figure 2 also shows that where the cubic 
spline performs well, the rational spline performs 
similarly across the range of tension parameter 
settings. 

5. RESULTS 

The rational spline based EMD was applied to the 
annual precipitation record for Melbourne, 
Victoria, Australia (1856 – 2006, N = 151) in order 
to provide insight into how the rational spline 
alternative performed relative to the original cubic 
spline method. The Melbourne record was 
decomposed using rational spline based EMD for 
tension parameter settings of 0 (cubic), 0.5, 1, 2, 5, 
10, 20 & 50. The performance was assessed using 
the previously discussed indicators of the number 
of sifts required to define the IMFs, the number of 
IMFs and whether the IMFs were orthogonal.  

5.1. Number of IMFs and sifts 

In Table 1 the number of sifts required to identify 
each IMF for the different P settings are presented. 

The first feature of note in Table 1 is that of the 8 
tension settings the cubic spline (P = 0) produces 
the least number of IMFs (4). As P increases, the 
number of IMFs required to decompose the time 
series increases, with P = 50 requiring 8 IMFs. 

The cubic spline also requires the least number of 

sifts to extract any given IMF. There is some 
indication in Table 1 that as P increases, the 
number of sifts required for each IMF increases, 
particularly for higher tension values. 

The main influence of the tension parameter 
appears to be to increase the number of IMFs in 
the decomposition and to a lesser extent to increase 
the number of sifts needed to extract each IMF. 

5.2. Orthogonal IMFs 

The variance of the IMFs and residual as a 
percentage of the observed variance is shown in 
Table 2 for each P setting. The cubic spline based 
EMD has the highest IMF and residual variance 
total of all the settings, with 24% more variance 
than the observed record. P equal to 10 and 20 
provide variance totals that are closest to the 
observed, with a general decrease in total variance 
as P increases. 

The fact that the IMF and residual variance sum is 
24% greater than observed for the cubic spline 
case indicates that the covariance terms between 
the IMFs and residual are non-trivial. In equation 1 
the sum of the variances + twice the covariances 
equals the observed variance, indicating that for 
the cubic spline case the covariance terms sum to 
12% of the observed variance. In terms of the 
orthogonality index of Huang et al (1998), this 
translates into a value of 0.12, which is greater 
than the acceptable limit of 0.1 indicated by Huang 
et al (2003). Therefore, the cubic spline IMFs and 
residual can not be considered to be orthogonal. 
For the other tension settings the orthogonality 
index values are 0.07 (tension = 1) or less. For P 
greater than 2, the orthogonality index values are 
less than 0.05, which is more acceptable. 

In an analysis not shown increasing P to 
significantly higher values than 50 (100 & 300) 
produced similar results to those for P = 50. This 
result is expected, since the near linear 
interpolation achieved with P equal to 50 leaves 
little scope for higher tensions to produce different 

Table 2. IMF and residual variance as a % the observed 
for each tension parameter setting. 

IMF 
Tension

1 2 3 4 5 6 7 8 
Res. Total

0 61 27 20 8.1     7.7 124 

0.5 60 25 16 6.2 2.6    3.0 113 

1 59 25 14 8.5 2.9    4.6 114 

2 58 23 14 7.9 3.0    4.4 110 

5 57 22 14 7.6 3.2    3.1 106 

10 56 19 10 5.4 4.6 2.3   3.2 101 

20 55 13 11 16 1.7 1.5   3.0 101 

50 55 13 9.8 16 1.2 0.1 0.7 0.4 0.7 97 

Table 1. Number of sifts required to identify each 
IMF for each tension parameter setting. 

IMF 
Tension 

1 2 3 4 5 6 7 8 Total
0 7 10 7 7     31 

0.5 7 10 7 11 8    43 

1 8 11 10 7 7    43 

2 7 12 8 7 7    41 

5 7 11 7 7 7    39 

10 7 11 8 7 7 7   47 

20 7 24 9 7 8 12   67 

50 7 19 12 7 7 18 8 8 86 
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results. 

Table 2 clearly shows that as the tension parameter 
increases the amount of variance associated with 
the IMFs and residual relative to the observed 
variance reduces. This reduction in variance is also 
seen in the covariance terms. Increasing P has the 
effect of progressively eliminating the cubic spline 
over- and under-shooting and thus reducing the 
variance and covariance of the resultant IMFs and 
residual. 

6. DISCUSSION 

Based on the performance indicators of the number 
of IMFs and the number of sifts for each IMF, the 
cubic spline based EMD outperforms the rational 
spline based EMD for the Melbourne annual 
precipitation time series. This is because in this 
case the residual is not decomposed into two 
components - the enhanced variance of the residual 
displays this effect. However, in terms of the total 
variance and orthogonality of the IMFs and 
residual, the cubic spline based EMD clearly 
underperforms the rational splined based EMD. 
For Melbourne annual precipitation a rational 
spline based EMD with tension parameter set to 5 
appears to give the optimal (best qualitative 
compromise) decomposition in terms of the 
number of IMFs, number of sifts, total variance 
and the orthogonality of the IMFs and residual. 

This example application of rational spline based 
EMD highlights the benefit of the variable tension 
parameter. This parameter can be modified to give 
decompositions that satisfy requirements of 
orthogonality, number of IMFs, number of sifts, 
etc, unlike the cubic spline based EMD which 
provides a single decomposition. In cases where 
the cubic decomposition was poor, there was no 
alternative, whereas now a set of rational 
decompositions is possible. Furthermore, with the 
cubic spline as a special case of rational splines, 
the cubic decomposition is not lost if rational 
splines are adopted. 

In cases where the orthogonality of the IMFs and 
residual is critical, for example, when using EMD 
as a basis for stochastically generating 
hydroclimatic data (McMahon et al., 2007), the 
ability to vary the tension parameter to produce 
efficient and orthogonal decompositions will prove 
very useful. 

This application demonstrates the positive aspects 
of rational spline based EMD; further testing of 
this method on a wider set of data is in process. 

7. CONCLUSION 

Artificial variance inflation in the IMFs and 
residual experienced with cubic spline based 
EMD, due to over- and under-shooting of the cubic 
splines, has been discussed. An alternative method 
of rational spline based EMD, which reduces the 
over- and under-shooting through a tension 
parameter, has been briefly outlined and 
demonstrated. Initial results indicate the variance 
inflation is greatly reduced, but at the expense of 
more IMFs and more sifting. The rational spline 
based EMD demonstrates useful features that will 
be further tested on a larger dataset. 
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